

Moving Toward an Ice-Free Arctic Ocean

Julienne Stroeve

National Snow and Ice Data Center (NSIDC), Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder

We're Losing the Ice Cover Fast

September sea ice from 1979 to 2008 Climatology (1979-2000)

In 2007 a New Record Low

Acceleration of the Downward Trend

Are IPCC-AR4 Simulations Conservative?

Modeled and observed Sept. ice extent time series (right) and % models with ice for 2075-2084 (left)

Why is the Trend Accelerating?

 The ice cover is not just shrinking it is also thinning.

Change in Distribution of Ice Age Classes

First-year ice

2nd year ice

3rd year ice

4th year ice

5 year or older ice

Younger Ice is Thinner Ice

Comparison between ice age and ice thickness from ICESat GLAS data

 Results suggest a decrease in mean thickness of 2.6 m in March 1987 to 2.0 m in March 2007

A Vulnerable Spring Ice Cover

In 2008, first-year ice covered 73% of the Arctic Basin, whereas in 2007 it covered 59% (and in 1985 it covered 36%).

In Spring 2008, the western Arctic was an average 50cm than in 2007.

Thinner Ice is More Vulnerable to Melting Out

- When you have a broad distribution of ice age (and hence thickness), an unusually warm summer can lead to a lot of ice melt and ice volume changes, but little change in overall extent of the ice cover.
- With the shift towards a younger and thinner ice cover, now an unusually warm summer can lead to large decreases in ice extent.

Open Water Areas Develop Earlier and Persist Longer

Ice Concentration Trends (1979-2008)

A Growing Albedo Feedback

Cumulative anomalies in absorbed solar radiation from JRA-25, 2002-2007, relative to 1979-2007

Perovich et al. 2008 found anomalies of 500% in absorbed solar radiation in the Beaufort and Chukchi Seas in 2007.

The Arctic is Warming in All Seasons

JRA-25 surface temperature anomalies by year and month (top) and by extended summer (middle) and extended winter (bottom)

Since about 2000, warming is happening in all months.

Natural Variability Remains Important

- High pressure over central Arctic Ocean
- A very warm Arctic

Low pressure over Siberia

Factors contributing to the 2007 record

Climate Impacts: Arctic Amplification

Air Temperature: A1B Scenario by 2100

Global mean warming of ~2.8°C (or ~5F); Much of land area warms by ~3.5°C (or ~6.3F) Arctic warms by ~7°C (or ~12.6F)

Arctic Amplification has Emerged

Autumn (SON) Temperature Anomalies

Air Temperature and Sea Ice Anomalies: 2004-2008 minus 1979-2008

Ice Loss Leads to Terrestrial Warming

Further "Greening" of the Arctic

Trends in vegetation synthetic activity from 1982–2005 (GIMMS-G AVHRR Vegetation indices)

Significant positive trends
Significant negative trends

A Net Carbon Release?

Burning methane over a thermokarst lake in Siberia (K. Walter)

Methane bubbles trapped in lake ice

Lake bubbling with methane in the Arctic

Projected Impacts on Precipitation

A Puzzle: Warming of Atlantic Inflow

Moorings at Svinoy and Fram Strait

Warmer SSTs

Anomaly of Summer Sea Surface Temperature (°C) (relative to 1982-2007 mean)

> Summer ≡ July 1 – September 30

SSTs from monthly mean AVHRR (Reynolds et al)

Conclusions

- We are quickly losing the ice cover
 - Impacts are already being felt
 - •Ice-free summers by 2030? Earlier?
 - We seem to be in the fast lane
 - Arctic amplification will be a big issue
 - •Impacts on terrestrial warming and carbon cycle
 - Impacts on atmospheric circulation

