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Abstract In hydrological sciences there is an increasing tendency to explore and improve artificial 
neural network (ANN) and other data-driven forecasting models. Attempts to improve such models 
relate, to a large extent, to the recognized problems of their physical interpretation. The present paper 
deals with the problem of incorporating hydrological knowledge into the modelling process through the 
use of a modular architecture that takes into account the existence of various flow regimes. Three 
different partitioning schemes were employed: automatic classification based on clustering, temporal 
segmentation of the hydrograph based on an adapted baseflow separation technique, and an optimized 
baseflow separation filter. Three different model performance measures were analysed. Three case 
studies were considered. The modular models incorporating hydrological knowledge were shown to be 
more accurate than the traditional ANN-based models.  
Key words  rainfall–runoff modelling; modular models; baseflow separation; hydrograph separation;  
artificial neural network forecasting; data-driven models  

Techniques de séparation de l’écoulement de base pour la modélisation modulaire 
par réseau de neurones artificiels à vocation de prévision de débit 
Résumé En sciences hydrologiques il y a une tendance croissante à explorer et améliorer les réseaux de 
neurones artificiels (RNA) et d’autres modèles de prévision conditionnés par les données. Les tentatives 
d’amélioration de tels modèles sont largement reliées aux problèmes reconnus de leur interprétation 
physique. Cet article traite du problème de l’incorporation de connaissance hydrologique dans le 
processus de modélisation grâce à l’utilisation d’une architecture modulaire qui tient compte de 
l’existence de divers régimes d’écoulement. Trois différents schémas de partition ont été employés: une 
classification automatique basée sur le regroupement, une segmentation temporelle de l’hydrogramme 
basée sur une technique adaptée de séparation de l’écoulement de base, et un filtre optimisé de 
séparation l’écoulement de base. Trois différentes mesures de performance de modélisation ont été 
analysées. Trois études de cas ont été considérées. Les modèles modulaires incorporant de la 
connaissance hydrologique se sont révélé être plus précis que les modèles traditionnels à base de RNA.  
Mots clefs  modélisation pluie–débit; modèles modulaires; séparation de l’écoulement de base;  
séparation d’hydrogramme; prévision par réseau de neurones artificiels; modèles conditionnés par les données    

 
INTRODUCTION 
 

Traditionally, modellers were, and often still are, trying to build a general, all-
encompassing model of a studied natural phenomenon. Hydrological forecasting 
models that involve the use of data-driven techniques are not exceptions in this sense: 
they tend to be developed on the basis of using a comprehensive (global) model that 
covers all the processes in a basin (ASCE Task Committee on Application of Artificial 
Neural Networks in Hydrology, 2000; Dibike et al., 1999; Abrahart & See, 2002; 
Dawson et al., 2005). However, such models (very often these are artificial neural 
networks, ANN) do not encapsulate the knowledge that experts may have about the 
studied system, and in some cases suffer from low accuracy in extrapolation. In many 
applications of data-driven models, the hydrological knowledge is “supplied” to the 
model via the proper analysis of the input/output structure and choice of adequate input 
variables (Bowden et al., 2005). However, much more can be done to incorporate 
domain knowledge into these models.  
 One of the ways of doing this is to try to discover different physically interpretable 
regimes of a modelled process (or sub-processes), and to build separate specialized 
(“local”) models for each of them—either process (physically-based) models, or data-
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driven. Such an approach is seen as one of the ways of including hydrological 
knowledge and improving the model’s performance. In order to combine the local 
models one may refer to the methods developed in machine learning (Haykin, 1999; 
Kuncheva, 2004) or, additionally, to enhance them by using a so-called fuzzy 
committee approach (Solomatine & Corzo, 2006). The latter paper also presents one 
possible classification of modular models.  
 Lately, a number of studies were reported where such an approach was undertaken 
(often being named differently, however). Solomatine & Xue (2004) applied an 
approach where separate ANN and M5 model-tree basin models were built for various 
hydrological regimes (identified on the basis of hydrological domain knowledge). 
Anctil & Tapé (2004) applied wavelet and Fourier transforms to the identification of 
high and low flows based on their frequency patterns. Some attempts have been made 
to find correlations between ANN components and processes in a conceptual model 
(Wilby et al., 2003). Solomatine & Siek (2004) presented the M5flex algorithm where 
a domain expert is given more freedom in influencing the process of building a 
machine learning model. Wang et al. (2005) used a combination of ANNs for fore-
casting daily streamflow: different networks were trained on the data subsets deter-
mined by applying either a threshold discharge value, or clustering in the space of 
inputs (several lagged discharges, but no rainfall data, however). Jain & Srinivasulu 
(2006) also applied decomposition of the flow hydrograph by a certain threshold value 
and then built separate ANNs for low and high flow regimes.  
 All the studies demonstrated the higher accuracy of the modular models when 
compared to the models built to represent all possible regimes of the modelled system 
(such models are referred to herein as global models). It is also worth mentioning an 
approach that closely relates to the modular approach (and can even be seen as part of 
it), namely ensemble modelling and its variations. In it, several different models 
responsible for the whole process under question are built, an ensemble of the models 
is constructed and their outputs are combined. (Note that these models are global and not 
models of the sub-processes, as is the case in modular modelling.) Several authors 
presented and tested such an approach in hydrological forecasting. See & Openshaw 
(2000) used a hybrid multi-model approach to river flow forecasting; they combined 
artificial neural networks (ANNs), fuzzy rule-based systems and ARMA models in an 
ensemble using several averaging and Bayesian methods. Xiong et al. (2001) used a 
nonlinear combination of the forecasts of rainfall–runoff models using fuzzy logic. 
Abrahart & See (2002) performed a comprehensive study comparing six alternative 
methods to combine data-driven and physically-based hydrological models. Georgakakos 
et al. (2004) analysed the advantages of multi-model ensembles where each model is a 
hydrological distributed model with the same structure but different parameters. The 
ensemble approach has a number of advantages, but is not a topic of this paper.  
 If we want to follow the idea of a modular approach, there is the possibility to take 
a somewhat deeper view of the underlying sub-processes to be modelled for accurate 
flow forecasting. In basin modelling, a typical approach would be to identify baseflow 
and the direct runoff (also called excess runoff or excess flow). Such an approach was 
also taken in our earlier publication (Corzo & Solomatine, 2006), and this paper 
continues to develop it further.  
 The main idea that we apply is to use specialized algorithms for the hydrograph 
analysis to separate baseflow from excess flow, form training data sets and build local 



Baseflow separation techniques for modular ANN modelling in flow forecasting 
 
 

 
 

Copyright © 2007 IAHS Press  

493

ANN-based models for each component. The focus is on optimization of the model 
structures, and of the parameters of the data separation and combination algorithms. 
The paper is structured in the following way. First a general description of modular 
models and committee machines is given. Second, the separation schemes applied are 
presented and the performance criteria are defined. Third, the case studies are 
presented. Lastly, results are discussed and conclusions are drawn.  
 
 
METHODOLOGY  
 
Modular modelling using baseflow separation 
 
The problem of hydrological modelling of a basin considered in this paper is charac-
terized by precipitation and discharge measured at different moments in time in the 
past (which can be seen as multivariate time series), and the reaction of the basin 
represented by the forecast of the discharge (flow) hours or days ahead. Hydrology of a 
basin is typically modelled by physically-based models implementing the partial 
differential equations describing the water motion. An alternative way of modelling is 
to use data-driven models, i.e. ANNs. One of the common problems with ANNs is the 
seasonality which is accompanied by the overfitting and the misrepresentation of noisy 
data. Data-driven models are trained to be accurate on average across the whole span 
of the time series characterizing the output. In some regimes they may not generalize 
well (so-called local overfitting), while on the other hand, before a particular pattern is 
learned the model potentially could switch into another regime (so-called local 
unbefitting) (Weigend et al., 1995).  
 The aforementioned modelling problems can be at least partly resolved by using 
modular models (Fig. 1), where for each regime a separate model is built. In computa-
tional intelligence, the overall model is often called a committee machine (Haykin, 
1999). However, to stress the fact that each model is trained on separate data sets, in 
this paper we use the more appropriate term modular model (Osherson et al., 1990). 
 As mentioned before, the main idea of modularization is based on baseflow 
separation (Fig. 2): instead of building one model responsible for representing the 
water flow for all regimes, two models are built. One model simulates the baseflow, 
and the other simulates the direct runoff or the total flow. These two models work 
sequentially: before time moment ts, the first model simulates only baseflow; between  
 
 

 
Fig. 1 Modular models based on local specialized models. 
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Fig. 2 Flow separation for local specialized models (ts = beginning of storm, tr = 
beginning of recession). 

 
 
ts and tr the second one operates if total flow is modelled, or both of them operate if 
direct runoff is modelled; then the first model operates again. The problem here is to 
find the moments when the flow regime changes from baseflow only to the regime 
where direct flow is present as well. The detection of changes in state of a highly 
variable system has been studied in many areas (e.g. Valdés & Bonham-Carter, 2005).  
 In this research, three modular schemes are tested: cluster-based, time-based and 
process-based, which are described in the following sections. In this paper we follow 
the definitions of baseflow given by Hall (1968) for time-based separation, and by 
Chapman (2003) for process-based separation. Note that there are also other inter-
pretations of how to define the baseflow (Beven, 2003; Uhlenbrook et al., 2002).  
 
 
Scheme MM1: clustering high and low flows  
 
Under certain assumptions or conditions, the use of a clustering technique can be 
interpreted as an automatic identification of the ongoing regimes (Geva, 1999). There 
is no guarantee, of course, that a direct relationship between clusters and identifiable 
hydrological regimes would be discovered. In this paper, such conditions were not 
identified or checked—this is something to undertake in subsequent research. 
Clustering-related experiments should be seen as a demonstration of a possibility of 
such an approach.  
 A standard k-means algorithm was used to find groups of input vectors of 
discharge and precipitation (Späth, 1985). This algorithm is based on a two-phase 
iterative process, which minimizes the sum of point-to-centroid distances, summed 
over a number of clusters (k). At each iteration, points are assigned to their nearest 
cluster centre (chosen randomly at the very first iteration), followed by recalculation of 
cluster centres. The number of clusters has to be chosen a priori.  
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 There is a wide variety of distance metrics to be used and for the purpose of this 
study the city-block (Manhattan) was selected. (We compared errors of the models 
built using several distance metrics and Manhattan appeared to result in the lowest 
error.) The distance metric used to build the cluster can be described as follows. Given 
an (m × n) data matrix X, the various distances between the vector xr (r = row) and xs 
(s = row) are:  

∑
=

−=
n

j
sjrjrsd

1
xx  (1) 

Note that a separate classifier for data splitting has to be built to serve as a splitting 
unit during operation (Fig. 1); its purpose is to attribute new examples to an appro-
priate model. The training data for such a classifier is constructed in the following 
way: the input data are the same as the input data for models m1 and m2, and the 
output data are the class labels corresponding to the identified clusters. 
 The result of applying the described procedure is model MM1 consisting of:  
(a) models m1 and m2 to model low flows and total flow, trained separately on the 

data subsets corresponding to the identified clusters; 
(b) a classification model for data splitting.  
 
 
Scheme MM2: time-based baseflow separation  
 
Instead of grouping the input vectors, one may explicitly use hydrological domain 
knowledge to partition the data into groups that would be modelled separately. The 
flow of water through the basin is heterogeneous, follows various routes and, in hydro-
logical analysis, it is often beneficial to identify the baseflow and the direct runoff 
(Hall, 1968; McCuen, 1998). Classical hydrograph baseflow separation analysis is in 
fact a graphical semi-empirical technique that splits the discharge values based on the 
measurement of discharge and precipitation (Fig. 2). In it, the values qs and qb of flow 
during the multiple storms are found, and the starting (ts) and ending (tb) of a storm 
phenomenon are identified.  
 The traditional “constant slope” method (McCuen, 1998) is manual: the beginning 
of the storm is identified as the point where the discharge is minimum, and the end of 
the storm corresponds to an inflection point. These two points are connected thus 
determining the sought baseflow area, and the slope of this line is recorded. Recently a 
number of other, simpler, methods have been introduced (Engel & Kyoung, 2005; 
Sloto & Cruise, 1996). However, in this paper, we use the “constant slope” method as 
the main foundation for building the separation algorithm. However, we made a slight 
modification that allowed for an easier algorithmic implementation: instead of looking 
for a hydrograph minimum, it is based only on the found inflection points. To connect 
to the point where the direct flow finishes, an imaginary line can be drawn from one 
inflection point to an inflection point at the end of the storm period (instead of 
connecting the minimum to an inflection point). The resulting line was found to be 
almost the same as the one identified by the traditional manual method.  
 The accurate determination of the inflection point by analysing the time series 
derivative estimates requires analysis of the complete event. Due to the high variability 
of data in a typical hydrological time series, the implementation of this method is not 
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straightforward since there are too many inflection points. One way to resolve this is 
by smoothing of the time series and then identifying the inflection points by analysing 
the second derivatives.  
 However, our experiments have shown that such analysis will still result in finding 
many inflection points, and we are interested only in those that correspond to the 
beginning of a storm event. To remove such “false” points, we have chosen to use a 
method used by Sloto & Cruise (1996) (who, however, applied it to the minimum 
points rather than to inflection ones). Their idea was to remove points that lie on the 
hydrograph within the period of a storm event, but to identify this period is of course 
not a trivial problem. However, there are empirical methods known to do this, and 
Sloto & Cruise used the method of Linsley & Kohler (1982). The latter suggested that 
the average storm duration should be close to two times the number N of days between 
the peak flow and the end of the direct runoff. To assess N the following equation is 
used: N = Ap, where A is the basin area, and p varies depending on the basin character-
istics. We used p = 0.2 based on the recommendations by McCuen (1998). This 
approach is not very accurate, but appears to work well for the purpose of the baseflow 
separation algorithm. 
 The time-based baseflow separation algorithm was implemented as follows: 
 

1. Smooth the data This step is made to ease the identification of inflection points. 
A moving average filter is used; the span n of the filter can be changed according 
to the hydrological conditions of the case study (i.e. concentration time):  
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 where Qt is original discharge; Qst is the smoothed discharge; and n is the filter 
span. 

 
2. Find the inflection points The inflection point is defined as the point where the 

second derivative of the discharge is zero, as follows:  
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3. Remove the “false” inflection points using the notion of the average storm 

duration, as described above.  
 

4. Separation Finally, a (virtual) line is drawn between the inflection points, which 
separates the baseflow from direct runoff and thus separates the two regimes: one 
when only the baseflow is present and the other one when the baseflow is accom-
panied by the direct runoff (thus constituting the total flow). It also graphically 
represents the switching rule for the two predictive models. Algorithmically, a 
linear separation model is used.  

  The baseflow separation method described above requires the data set corres-
ponding to the whole storm. Such data are available during training (calibration), 
so the algorithm can be used to separate the data and train two separate models, 
which are referred to as m1 and m2.  

  Note, however, that the algorithm cannot be applied during operation (and 
testing) since it needs future data characterizing the whole storm event. A solution 
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is to train yet another data-driven model (i.e. a surrogate or meta-model) that 
replicates the baseflow algorithm. This model is referred to as MM2-IP (MM2-
related model for Inflection Points), and it predicts the position of the limiting 
inflection points. The training data were generated by running the described 
baseflow algorithm on historical data. To then apply the time-based separation in 
operation, the algorithm should also include the following additional steps:  

 
5. Generate data for the MM2-IP model Apply steps 1 to 3 to the historical data 

and generate enough data for training.  
 
6. Train the MM2-IP model Use the generated data to train the MM2-IP model (a 

machine learning model, e.g. ANN) that would predict the location of inflection 
points in the operation phase of MM2.  

 The result of applying the described procedure is the MM2 model consisting of:  
(a) models m1 and m2 trained separately to model baseflow and direct flow; and 
(b) model MM2-IP that in the operation (or testing) phase identifies the inflection 

points used for data splitting.  
 
 
Scheme MM3: process-based baseflow separation using optimized filters  
 
The traditional baseflow separation methods mentioned above cannot be effectively 
used when separations are to be undertaken on a long continuous record of stream-
flows, rather than just a few storm period hydrographs. This has led to the develop-
ment of a class of algorithms sometimes referred to as “numerical”. Relatively recent 
research has applied flow separation filters that consider one or two variables in 
recursive algorithms (Arnold et al., 2005; Chapman, 2003). However, these authors 
define baseflow slightly differently, assuming that even in the periods of low flow 
there are two components of flow which can be interpreted as direct runoff and 
baseflow. The method used in this study is based on the baseflow recursive filter 
(Ekhardt, 2005).  
 Ekhardt (2005) compared many of the existing baseflow filtering algorithms and 
proposed the following equation: 

( ) ( )
max

max)1(max

BFI1
BFI1BFI1

a
Qaaq

q ttb
tb −

−+−
= −  (4) 

where qbt is the baseflow at time step t; qbt-1 is the baseflow at the previous time step; 
Qt is the measured total flow; BFImax is a constant that can be interpreted as the 
maximum baseflow index; and a is a filtering coefficient, or recession constant. The 
three coefficients qb0, BFImax and a are unknown, and there is no commonly accepted 
method to identify them. In principle, identification of coefficients is based on trial and 
error and sometimes it is possible to use the recession curve coefficients. In this paper, 
the three mentioned coefficients are found through an optimization process. The goal  
is to find such coefficients which ensure that the modular model has the best 
performance. 
 The MM3 model (Fig. 3) consists of two models: m1 for modelling the excess 
flow, and m2 for modelling the baseflow. The ultimate goal is to predict the total flow  
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Fig. 3 Optimization of the process-based separation model (MM3).  

 
 
Qt+1 at the next time step. The baseflow filter (equation (4)) separates the flow into two 
components and they are fed as inputs to the models. Both models must be trained on 
measured data and the model structure must also be optimized (e.g. finding the optimal 
number of hidden nodes in ANNs).  
 Since the baseflow cannot be measured, its values are approximated by equation 
(4). The three unknown parameters of this equation are found as a result of the opti-
mization process in which the total model error (RMSE) is minimized. Optimization 
can be performed by any direct search method, for example, by randomized search, 
genetic algorithm (GA) or adaptive cluster covering (Solomatine et al., 1999). In the 
present study we used a GA and pattern search (Abramson et al., 2004). Note that 
during the search, in order to calculate the error (RMSE) for every new parameter 
vector, two ANNs are to be trained, so the process can be computationally expensive.  
 The objective function involves a weighted function with a high weight for the 
overall process and a low weight for the baseflow component: 

0 ( ) 1 1 2 2RMSE RMSE RMSET Overall m mE w w w= + +  (5) 

where m1 and m2 refer to models of direct flow and baseflow, respectively; and wi are 
the corresponding weights. The weights in equation (5) were selected on the basis of a 
(limited) number of experiments and take the values 0.6, 0.3 and 0.1, correspondingly. 
Such weights are justified by the assumption that our main objective is to forecast the 
flood situation; their values, however, could be subject to optimization as well.  
 Each calculation of the objective function (related to the model error to be 
minimized) involves the following steps:  
– generate a random vector {b0, BFImax, a, number of hidden nodes in each ANN}; 
– run equation (4) to perform the baseflow separation, generating two different 

training sets; 
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– train two different ANN models m1 and m2 of direct and baseflow respectively;  
– calculate the overall error ET using equation (5) (total flow is found as the sum of 

the models outputs). 
The resulting MM3 model consists of:  
(a) models m1 and m2 trained separately to model baseflow and direct flow; and 
(b) an optimized numerical filter (equation (4)) calculating the baseflow that is used to 

split the data.  
 
 
APPLICATION AND RESULTS 
 
Case studies 
 
Three basins, Bagmati in Nepal (B1), Sieve in Italy (B2) (Brath et al., 2002; 
Solomatine & Dulal, 2003), and Brue in the UK (B3) (Moore, 2002) were considered 
as case studies (Table 1).  
 The size, location and other characteristics of the basins are significantly 
different, and this allowed for validating the presented modelling approach under 
different spatial and temporal forecasting conditions. The detailed hydrogeological 
description of these three basins and the detailed description of the global ANN 
models (i.e. the model trained on the whole data set) for cases B1 and B2 can be 
found in the references mentioned above. The choice of the input variables for global 
and modular ANN models was based on a correlation and mutual information 
analysis between the input and output variables. The variables chosen for the ANN 
models are shown in Table 2.  
 
 
Table 1 General hydrological characteristics of the three basins. 

Basin name B1 (Bagmati) B2 (Sieve)  B3 (Brue) 
Topography Mixed Mountain Mountain 
River length (km) 170  56  20  
Area (km3) 3500 836 135.2 
Data set: from January 1988  December 1959 1 September 1993 
         to  December 1995 February 1960 30 August 1995 
Training  1 January 1988– 

22 June 1993  
13 December 1959 19:00–
28 February 1960 

September 1993– 
August 1994 

Verification  23 June 1993– 
31 December 1995  

1 December 1959 07:00–
13 December 1959 18:00 

September 1994– 
August 1995  

Location Nepal Italy England 
 
 
Table 2 ANN model structures and training parameters.  

Basin name B1 B2 B3 
Forecast period 1 day 1 hour 2 hours 
Input variables Pt, Pt-1, Pt-2, 

Qt-1, Qt 

Pt, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5,  
Qt-1, Qt-2, Qt 

Pt, Pt-1, Pt-2, Pt-3, Pt-4,  
Qt-1, Qt-2, Qt 

Network structure GM 5-4-1 9-5-1   8-16-1 
P = precipitation, Q = discharge. 
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Error metrics 
 
For proper model assessment, various error metrics were applied. The two statistical 
measures most widely used, are the normalized root mean squared error (NRMSE, 
equation (6)) and the coefficient of efficiency (CoE, equation (7)). We also used two 
other measures: persistence index and the relative error.  

obs

SSE

NRMSE
σ

n=    (6) 
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 The persistence index (PERS) focuses on the relationship of the model perform-
ance and the performance of the naïve (“no-change”) model which assumes that the 
forecast at each time step is equal to the current value (Kitanidis & Bras, 1980):  

naiveSSE
SSE1PERS −=  (8) 

where ( )∑
=

+ −=
n

t
tLt QQ

1

2
,obs,obsnaive ,SSE  which is a scaling factor based on the 

performance of the naïve model; Qest,t is the neural network forecast of the observed 
discharge Qobs,t at time t where t = 1, 2, …, n; L is the lead time (L = 1 for one-day-
ahead forecast); and n is the number of steps for which the model error is to be 
calculated.  
 A value of PERS < 0 means that the considered model is less worthy than the 
naïve model (i.e. it is degrading the provided information) while 0 < PERS < 1 
indicates that the considered model is better than the naïve model (where the closer to 
1 the better). Lauzon et al. (2006) suggest using PERS in cases when the discharge 
forecast is made on the basis of previous values.  
 Another useful error measure is the relative error (RE): 

%100
||
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,obs

,,obs ×
−

=
t

tpt
t Q

QQ
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The use of RE as an additional error measure is justified by the following. If RMSE or 
CoE are used, the same error value may be considered to be high in the low-flow 
season, and relatively low for the high-flow season. One solution could be to weigh the 
error values differently for different seasons, but such an approach will still depend on 
the objective identification of the low- and high-flow regions. Another solution is to 
use RE, which automatically takes into account the value of the measured variable, so 
that a value of RE corresponding to large absolute errors in the case of low flows is 
large while it will be relatively lower in the case of high flows.  
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 In this study REt is used to identify the percentage of samples belonging to one of 
three groups: “low relative error” with RE less than 15%, “medium error” with RE 
between 15 and 35%, and “high error” with RE higher than 35%. The ranges were 
determined after experiments with the two trial models. The low error value is expected 
to cover possible measurement errors that could be around 20% (Beven, 2003). 
 
 
Model setup 
 
All ANN flow forecasting models were three-layer MLP with tangent transfer 
functions in the hidden and output layers. The input parameters were determined by 
the use of correlation analysis and average mutual information. The composition of the 
training and verification data sets was performed by analysing the statistical 
homogeneity. The training was done using the Levenberg-Marquardt algorithm; 
termination was based on cross-validation and on reaching the maximum number of 
epochs (150).  
 For initial clustering in MM1, we used the k-means algorithm. Classifiers in 
splitting models for MM1 and MM2 used an RBF ANN and the Fisher discriminant 
method, respectively. These were selected based on their performance. Regression 
trees were also tested to serve as classifiers but they were less accurate.  
 For the ANN MLP and RBF models, the MATLAB Neural Network toolbox was 
used. The Fisher discriminant algorithm method was based on the MATLAB 
Statistical Toolbox. Optimization of the MM3 model was based on the algorithms 
from the MATLAB Genetic and Direct Search Toolbox. A Pentium 4 3.2 GHz PC was 
used. 
 
 
RESULTS AND DISCUSSION 
 

 
The models were successfully trained and optimized. In training the MLP ANNs, 150 
iterations appeared to be sufficient to reach convergence in all cases. For optimization, 
a GA and Pattern Search (Abramson et al., 2004) were tested in all experiments. It 
appeared, however, that the GA was too slow, especially for basins B2 and B3 where it 
did not show any sign of convergence even after 24 hours of computation. The 
experience with the GA cannot be characterized as positive; however, this could be 
attributed to the details of its implementation in MATLAB and, probably, not enough 
effort invested in tuning its parameters. In the end all the results in all cases reported 
were achieved by the pattern search.  
 The calculated NRMSE values in verification for the different modular model 
structures are presented in Table 3. The modular models in the three case studies show 
variable performance. In the case of the more complex basin B1, with the largest area 
and largest forecast horizon, modular models improve on global models in relative 
terms more than for other basins. The mountainous region and the size make it a highly 
nonlinear system, and this implies that there is probably a large influence of baseflow 
components in the forecast streamflow and, consequently, higher importance of 
modelling it by a specialized model. The highest performance is shown by the MM3 
model (NRMSE lower than that of the global ANN by almost 24%).  
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Table 3 Performance in verification of the different modular models and global models for each basin 
(NRMSE). 

  GM MM1 MM2 MM3 Naïve 
B1 58.63 48.46 50.92 44.30 67.08 
B2   7.65 12.02   6.54   6.31 13.86 
B3 10.03 10.10 10.38   9.58 12.68 
 
 
Table 4 Performance in verification of the different modular models and global models for each basin (CoE). 

 GM MM1 MM2 MM3 
B1 0.66 0.77 0.74 0.80 
B2 0.9942 0.9855 0.9957 0.9960 
B3 0.9899 0.9898 0.9892 0.9908 
 
 
Table 5 Persistence index in verification of the different modular models and global models for each 
basin (PERS). 

 GM MM1 MM2 MM3 
B1 0.23 0.47 0.41 0.51 
B2 0.69 0.24 0.78 0.79 
B3 0.38 0.37 0.33 0.43 
 
 
 Basins B2 and B3 are small in size with a relatively fast response. In general, it 
can be said that these catchments were modelled with high accuracy by both global 
and modular models. High accuracy makes it difficult to compare the models using 
CoE which is very close to 1 (Table 4). Nevertheless it is clear that the use of 
hydrological knowledge in flow separation gives good results for these basins as well. 
Once again the MM3 models show the largest reduction in NRMSE compared with the 
global models for these basins. 
 The results show that the error of the modular and the global models are less than 
that of the naïve model. The naïve model is the simplest solution and could be 
interpreted as a measure of the simplest form of linearity in the time series. All other 
models include the precipitation as an input variable (which the naïve model does not), 
so it is not surprising that they have better performance. It is also worth noting that the 
relatedness (measured by correlation) between the precipitation and the future values 
of discharge is variable and our experiments (not presented here) show that it depends 
on the different seasons (since under different flow conditions soil moisture and the 
time lags are also different). This prompts the idea of using the different model 
structures for different seasons—something to undertake in future research.  
 In terms of the coefficient of persistence (PERS, Table 5), the results are consistent 
with the NRMSE and CoE. MM3 outperforms all other models in all three case 
studies. The persistence index for the MM3 is near or above 0.5, showing a significant 
increase in performance over the naïve predictor. In terms of PERS, MM2 is better 
than the global model for the B1 and B2 basins; however, results for the B3 basin are 
the worst amongst all the models.  
 The percentages of samples in the three different relative error (RE) groups are 
shown in Fig. 4. Using more than one error metric in the analysis makes it possible to  
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Fig. 4 Relative error level in percentage for: (a) the Bagmati River basin (B1); (b) the 
Sieve River basin (B2); and (c) the Brue River basin (B3). 

 
 
evaluate better the performance of models for various hydrological regimes. The use of 
the additional error measure, RE, can be justified, for example, by the following 
observations: NRMSE of MM2 for B1 is less than that of the GM, but at the same time 
there are fewer samples with low RE than for the GM. This seems contradictory, but 
the NRMSE squares the absolute error so the high flow samples with low RE may 

(a) 

(b) 

(c) 
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have high absolute error, which, being squared, will contribute considerably to the total 
NRMSE. At the same time, since their RE is low, they would be attributed to the “low 
RE” group which would contain a large number of such examples. This is what 
happened with the samples predicted by GM for which the “low RE” group appeared 
to be larger than for MM2.  
 For basin B2 there is an increase in the low relative error percentages for models 
MM2 and MM3 (Fig. 4(b)). This is consistent with the NRMSE measure. In this case 
the MM2 model shows a more precise and accurate result having 99% of the sample 
with a low RE.  
 Figure 5 shows a fragment of a hydrograph generated by MM3 for B2 using test 
data. This model has been optimized, so that BFImax is 0.25 and the recession coeff-
icient a is 0.96. Indeed, for the fast response basins, values of this order are expected: 
the BFI should be small, and the recession coefficient should be high due to the 
relatively high slope in the recessions.  
 In contrast to B2, the B1 catchment in Himalaya, which is large, has a high 
groundwater storage. This basin has a BFImax of 0.95 and coefficient a of 0.23. Note 
that BFImax as defined by Ekhardt (2005; equation (6)) is the maximum value of the 
baseflow index (BFI) which is defined as the total volume of baseflow divided by the 
total volume of runoff for a period of time (Wahl & Wahl, 1995). A value of 0.23 
therefore does not mean that the volume of baseflow is 23% of the total volume.  
 In general, the modular model MM3 outperforms the global model; this can also 
be illustrated graphically as in Fig. 5 with a typical fragment of the hydrograph from 
Fig. 6. Figure 5 shows that the baseflow for this catchment does not have a high 
contribution. This may actually explain why the accuracy of the modular model (where 
baseflow is modelled separately in this case) is not much higher than that of the global 
one. Another reason, of course, is that the GM is already very accurate.  
 An interesting question to ask is why the MM3 algorithm results in a better 
performance than that of MM1 and MM2. One may conclude that this can be attributed 
to the fact that Ekhardt’s filter is a better device to identify the baseflow, so the MM3 
model is therefore better than the other models. However, the better performance of 
MM3 may also be a result of other factors, so that further analysis is required. A more 
general question is whether the flow components identified by the separation 
algorithms really do correspond to different sub-processes (which we tried to model 
separately), or do these algorithms produce “baseflow” while not necessarily repre-
senting a clearly identifiable sub-process? One may argue, however, that accurate 
separation of sub-processes corresponding to base and excess flow (which are 
currently defined in a quite approximate fashion, and differently by different authors) 
is simply not possible in principle. However, answering these interesting questions is 
beyond the scope of this paper.  
 
 
CONCLUSIONS 
 
In this study, an attempt to introduce more knowledge about the hydrological 
processes into data-driven modelling was undertaken. The existence of two flow 
regimes was considered (base- and excess flow), and instead of training a global model 
on the whole data set, the training set was partitioned into two subsets, and two local  
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Fig. 5 MM3 performance in basin B2 (with the baseflow component shown). Error 
indicated is the difference between the predicted and measured discharges.  
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Fig. 6 Performance comparison of MM3 and GM models in basin B2 (fragment). 
Error indicated is the difference between the predicted and measured discharges.  
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models, each responsible for a particular hydrological regime, were built. Three 
different partitioning schemes were employed. In one of them, the baseflow separation 
filter of Ekhardt (2005) was used for flow separation, and two different ANN models 
were trained, one for each flow component. This last modular model scheme was 
complemented by a randomized search optimization of the coefficients in the baseflow 
filtering equation.  
 The use of domain knowledge in the modelling framework presented proved to be 
beneficial. Even the traditional semi-empirical flow separation algorithms, such as 
constant slope, can add to the accuracy of data-driven hydrological models. Partition-
ing the data by clustering gave good results only in some of the basins. Such par-
titioning is simple, but does not directly relate to hydrological regimes and is highly 
sensitive to the distance measure in the clustering. The best model overall is the one 
using the optimized baseflow filtering equation. In general, it can be concluded that the 
use of domain knowledge with a modular approach is effective in predictive modelling 
in a hydrological context.  
 There are several research issues that are to be addressed (and which are already 
being addressed in the ongoing research): the proper “soft” combination of the model-
ling modules especially at the transition point from one regime to another; comple-
menting hydrological knowledge by the routines for automatic identification of 
regimes (for example, using the apparatus of hidden Markov models); modularization 
of physically-based models (following, for example, an approach outlined in 
Solomatine, 2006); and combining data-driven and physically-based models.  
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