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Abstract: Cleanup of contaminated aquifers by pumping and injection is one of the commonly used
approaches for the remediation of groundwater contamination. Contaminant transport travel time in
groundwater can be calculated using a method called ‘particle-tracking’ based on advection. The travel time
of the contaminants is a highly non-linear and nonconvex function of pumping/injection rates and well
locations. Global optimization (GO) techniques are therefore appropriate for finding an optimum pumping
strategy. However, a pronounced disadvantage of these techniques is that they require running  simulation
models – in this case groundwater flow and particle tracking models - quite many times taking very long
time to find an optimal solution. On the other hand, Artificial Neural Networks (ANN) are nowadays one of
the widely used modelling techniques which can approximate a non-linear relationship between  input and
output data sets without considering physical processes and the corresponding equations of the system. As a
result, an ANN model is much faster than a physically based model which it approximates. In this study,
ANNs were trained to approximate the groundwater models MODFLOW and MODPATH using the data
generated by these models. The resulting ANN models were then coupled with a GO tool, GLOBE, to find
optimal pumping strategies. The experiments were carried out using different number of pumping wells and
different GO algorithms.

1. Introduction

Management and cleanup of contaminated aquifers requires a long term strategy and huge
amount of investments. The widespread occurrence of subsurface contamination problems
has resulted in the development of various techniques for its remediation. The pump-and-
treat method is one of the most commonly used methods for both large- and small-scale
groundwater containment and cleanup. This method involves installing and operating a
set of extraction/injection wells so that the contaminated groundwater is hydraulically
contained and can be pumped out for subsequent treatment (Wang and Zheng[23]).
During the last decade, the combination of optimization and simulation approach has been
used extensively for the optimal design of pump-and-treat systems. In this approach the
simulation is carried out with usual types of available groundwater models for flow and
transport and the optimization is based on the standard linear programming and non-linear
optimization tools. Some examples of the application of this approach are Bogacki and
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Daniels[2]; Greenwald and Gorelick[7]; Chang et al.[3]; Gorelick et al.[6]; Willis and
Yeh[24]. Several researchers also used randomized search techniques for optimization.
For example, Wang and Zheng[23] used genetic algorithms (GA); Karatzas and Pinder[9,
10] presented an outer approximation method; Aral and Guan[1] used a differential GA
and El Harrouni et al.[5] used GA and a dual reciprocity boundary element method.
Contaminant transport travel time in groundwater can be calculated using a method called
‘particle-tracking’ based on advection (Greenwald and Gorelick[7]; Jonoski et al.[8]). The
travel time of the contaminants is a highly non-linear and nonconvex function of
pumping/injection rates and well locations. Studies of Maskey et al.[11, 12] show the
successful use of Global optimization (GO) techniques for finding an optimum pumping
strategy. However, a pronounced disadvantage of these techniques is that they require
running simulation models – in this case groundwater flow and particle tracking models -
quite many times taking very long time to find an optimal solution. In order to reduce the
computational time, different techniques can be applied including the hybrid use of
artificial neural networks (ANNs) and GO algorithms (GOAs) (see Solomatine and Avila
Torres[21]; Dibike et al.[4]). Some examples of the hybrid use of ANNs and GOAs were
reported by Rogers et al.[18] and Rao and Jamieson[17]. The former used ANNs to
predict selected outcomes of a groundwater contaminant transport model. Then, a GA was
applied to search through possible alternatives evaluating the effectiveness of each
alternative with predictions generated by the ANNs. Similarly, the latter made use of an
ANN in association with a groundwater simulation model to determine the performance
of different combinations of abstraction/injection wells, and thereafter, a GA to identify
the least-cost solution offered by these combinations. Morshed and Kaluarachchi[14] also
used ANN and GA, but in their work a GA and a back propagation algorithm were used
to train two separate ANNs. In all these works, instead of particle tracking, concentration
of the plume was used to estimate the state of the contamination.
This paper describes the approximation of groundwater flow and particle tracking models
with ANNs for the optimal selection of pumping strategy for groundwater plume removal.
The ANN, a widely used modelling technique, can approximate a non-linear relationship
between input and output data sets without considering physical processes and
corresponding equations of the system. As a result, an ANN model is much faster than a
physically based model which it approximates. In this study, ANNs were trained for
different pumping scenarios using the data generated by groundwater models
MODFLOW and MODPATH, developed by USGS. The resulting ANN model was then
coupled with a GO tool, GLOBE, to find an optimal pumping strategy. The experiments
were carried out using different number of pumping wells and different GO algorithms.
The results from the ANN models were compared with the results from the physically
based models (MODFLOW and MODPATH).

2. Groundwater flow and particle tracking models

In the plume removal by pumping/injection system, pumping rates and well locations are
major decision variables. For a given set of decision variables a flow model updates the
hydraulic head (a state variable) and a particle-tracking model computes the particle travel
time and path lines. The equation describing the three-dimensional movement of
groundwater assuming constant density is expressed as:
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where: Kxx, Kyy and Kzz are the principle components of the hydraulic conductivity along
x, y and z coordinate axes; h is the hydraulic head; qs is the source/sink term; Ss is the
specific storage; and t is time.
The total cleanup time of a contaminant plume by pumping can be viewed as a function of
the transport of particles defined at the plume boundary.  When all particles have reached
a pumping well, the plume is said to be removed. Hence, the travel time of the slowest
particle is assumed to be the total cleanup time. Considering the transport by advection
only, the time it takes for a particle to flow to a pumping well is given by the integral
along the particle flow path S(q) as follows (Greenwald and Gorelick[7]):
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where: q = vector of  pumping and injection rates; t(q) = travel time of the particle; v(q) =
velocity in the direction of flow; ds = incremental distance in the direction of flow; and
S(q) = length of particle flow path. The non-linearity of this function (travel time and
pumping rates) is mainly due to the facts that (1) the integration is to be evaluated over
the flow path S(q) which is a function of pumping rates, and (2) the velocity over each
incremental distance is a function of pumping rates, and velocity appears in the
denominator of the integral.
In this study, the groundwater simulation codes MODFLOW (McDonald and
Harbaugh[13]) and MODPATH (Pollock[16]), developed by U. S. Geological Survey, for
flow and particle-tracking respectively have been used.

3. GOAs and optimization problem formulation

3.1 Global optimization algorithms

Global optimization is aimed at finding the best solution of constrained optimization
problems which (may) have various local optima. A GO problem (GOP) with box
constraints has been posed in Solomatine[19] as follows:
Find an optimizer x* such that
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where the objective function f (x) is defined in the finite interval (box) region of the n-
dimensional Euclidean space as:
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This constrained optimization problem can be transformed to an unconstrained
optimization problem by introducing a penalty function with a high value outside the
specified constraints. In cases when the exact value of an optimizer cannot be found, we
speak about its estimate and, correspondingly, about its minimum estimate.
There are various algorithms oriented towards the search of global minima in GOPs (see
Pinter[15]; Torn and Zilinskas[22]). In this study, a GO tool GLOBE developed at IHE,
Delft has been used for optimization. The GLOBE now incorporates nine different
algorithms. Three of them, namely GA, adaptive cluster covering (ACCO) and Controlled
random search (CRS4) have been used in this study. Solomatine [19, 20] discussed all the
GOAs used in the GLOBE system in detail.

3.2 Optimization problem formulation

Two separate optimization problems are formulated: (1) minimization of cleanup cost
(establishment cost and operation plus maintenance cost of pumping and wells), and (2)
minimization of cleanup time. In both cases the pumping rates and the well locations are
decision variables. The upper and lower limits in pumping rates and the specified area for
well locations are considered as constraints. In addition, in the case of cost minimization
the limitation in cleanup time is also introduced as a constraint.

3.2.1 Optimization of cleanup time
If the aquifer cleanup time is to be minimized the objective function and the constraints
can in general be defined as (Maskey et al.[11, 12]):

minimize: ),,....,,,,,....,( 221121 nnn rcrcrcqqqft =       (5)

subject to: qmin ≤ (q1, q2,...qn)≤ qmax

cmin ≤ (c1, c2, ... cn) ≤ cmax

rmin  ≤ (r1, r2, ... rn) ≤ rmax

where t = cleanup time; q1, q2,...qn = pumping rates in wells 1, 2,...n; c1, c2, ...cn = column
number (on grid) of wells 1, 2, ... n; r1, r2, ... rn = row number (on grid) of wells 1, 2, ... n;
qmin, qmax  = minimum and maximum ranges in pumping rates; cmin , cmax  = ranges in
column number for well locations; and rmin ,  rmax  = ranges in row number for well
locations. In the experiments presented in this paper, only the pumping rates have been
taken as decision variables keeping the positions of the wells fixed.

3.2.2 Optimization of cleanup cost
The well installment cost (capital cost) and the operation and maintenance cost per year
(annual cost) can be expressed as a function of total pumping rates as:
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Operation and maintenance cost per year = rQC2       (7)



The constants C1 and C2 depend on the unit rates (per unit pumping rate) of capital cost
and annual cost respectively. The coefficients m and r are generally less than unity and
they account for the rate of change (generally decrease) in per unit capital and annual
costs respectively with respect to the increase in total pumping rate. The Q is the total
pumping rate of all wells and qi are the pumping rates of individual wells with n being the
number of wells. Thus, for the optimization of the total cost of well installment and
pumping the objective function can be expressed as a function of pumping rates.
Expressing the total cost in present worth the objective function and the constraints are
defined as:
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subject to t ≤ tmax

The constraints in pumping rates and position arrays apply similarly as in the optimization
of cleanup time. In the above equation: t is the cleanup time in years, D is the discount
rate (discounted from kth year) and C3 is the coefficient that takes the value unity if k is a
whole number and has the value of the fraction part of the k otherwise. The tmax is the
maximum limit in cleanup time. If the resulting cleanup time is greater than the maximum
limit the model generates a high value of the cost outside the constraint limit (a penalty)
as an objective function value.

4 Neural network approximation of groundwater models

After enjoying much success in other areas of application, such as in the fields of pattern
recognition and robotics, ANNs are now being applied more and more to problems of the
aquatic environment (Dibike et al.[4], Solomatine and Avila Torres[21]). This wide range
of applications follows from the property of ANN that it is possible to obtain a (very fast)
prediction of system response without attempting to reach an understanding of, or to
provide an insight into, the nature of the phenomena that are being modelled.
Multi–layer feed-forward networks (also known as multilayer perceptrons or MLPs)
constitute one of the most widely used classes of ANNs. Each such ANN consists of an
input layer, an output layer and one or more intermediate, ‘hidden’ layers as shown in
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     Figure 1: Multi-layer feed-forward network with one hidden layer.



Figure 1. Each unit in the hidden layer and the output layer has a (usually non-linear)
transfer function such as sigmoid, tan-hyperbolic, etc. The most common learning rule for
multilayer perceptrons is called the “back propagation rule”. In order to learn
successfully, the output of the net should approach the desired output during training. This
is achieved by adjusting the weights on the links between the units, and the generalized
delta rule does this by calculating the value of the error function for a particular input, and
then back-propagating the error from one layer to the previous one. Each unit in the net
has its weight adjusted so that it reduces the value of an error function. These steps are
repeated for each input pattern in the training set; in this way the error function is reduced
and the network learns.
In this study, ANN is required to approximate the groundwater models MODFLOW and
MODPATH for prediction of cleanup time (or cleanup cost). To do this, the network is

0

2000

4000

6000

8000

10000

0 2000 4000 6000 8000 10000

Simulated Cleanup time (days)

Training data Testing data

(a) Cleanup time, 2 pumps

0

2000

4000

6000

0 2000 4000 6000

Simulated Cleanup time (days)

Training data Testing data

(b) Cleanup time, 3 pumps

0

40000

80000

120000

160000

0 40000 80000 120000 160000

Simulated Cleanup cost (US $)

Training data Testing data

(c) Cleanup cost, 2 pumps

0

24000

48000

72000

96000

120000

0 24000 48000 72000 96000 120000

Simulated Cleanup cost (US $)

Training data Testing data

(d) Cleanup cost, 3 pumps

Figures 2(a-d): Scatter plots of network training and validation for different cases.



first trained with data generated by these models when applied to a hypothetical
contaminated unconfined aquifer system. The inputs to the network consist of the
pumping rates of a number of wells and the output is the corresponding cleanup time or
cleanup cost calculated by the models. Four different cases with different output (time or
cost) and different number of wells were considered.  In each of these cases, relatively
large number of data covering reasonable range of  pumping rates is used to train and
validate the networks. The scattered plots on Figs. 2(a-d) illustrate the networks training
and validation performances for the different cases considered.  The validation result
shows that the trained ANNs predicted the model output (both cleanup time and cleanup
cost) to a reasonable accuracy. It is  important to note that the accuracy is higher
especially in the lower range of these values where the accurate approximation of the
models is critical for the next optimisation step. The mean absolute errors corresponding
to the smallest 50 % of the prediction values during training and validation of the ANNs
are shown in Table 1. Once the training is satisfactory, the resulting ANNs are converted
in to executable codes and each NN model is then coupled with the GO tool (GLOBE)
replacing the physically based model (MODFLOW and MODPATH) to find an optimal
pumping strategy to minimise cleanup time or cleanup cost.

Table 1: ANN performance on the training and validation data

Cleanup time
(days)

2 pumping wells

Cleanup time
(days)

3 pumping wells

Cleanup cost
(US $)

2 pumping wells

Cleanup cost
(US $)

3 pumping wells
Training MAE 104 46 1977 1940
Validation MAE 122 43 2164 1919
Correlation coeff. 0.965 0.977 0.956 0.957

5 Optimization and comparison  of results

5.1 Coupling of simulation models with GLOBE

Using the GLOBE system as an optimiser requires coupling it with the simulation model
so that they execute as a single application without the necessity of interactive input
during computation. When MODFLOW and MODPATH (physically based models) are
used as simulation models, two sets of executable programs are needed to couple them
with GLOBE. The first program converts the GLOBE output file (searched values of
parameters) as an input file to MODFLOW. The second program is required to read the
output form MODPATH and to compute the objective function value to feed to GLOBE.
Whereas, when the physically based models are replaced by an ANN model, the
additional executable programs are not required. In fact, the ANN model is built in such a
way that it takes input directly from the GLOBE output file and generates output in the
format acceptable to GLOBE as input. In both cases, the coupled model starts from
GLOBE and runs in a loop until the selected algorithms generate an acceptable solution
and a stopping criterion is met.



5.2 Optimization of cleanup time

Using the coupled model as described in Sec. 5.1, the optimization of cleanup time was
carried out using both physically based model and ANN model using three different
GOAs. The comparison of results for 3 pumping wells and 4 pumping wells are shown in

Figs. 3 (a-b) and 4 (a-b) respectively. In terms of the optimal solutions, the performance
of ANN models is better in the 3 well case than in the 4 well case. This is due to the fact
that in 4 well case the ANN was trained with courser data than in 3 well case. In both
cases, all three algorithms produced more or less similar cleanup time. On the contrary, as
seen in Figs. 3(b) and 4(b), the time taken to find the optimal solution by different
algorithms are significantly different. These figures also show the relatively small running
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time taken to find the optimal solution when an ANN replaces the physically based
models.

5.3 Optimization of cleanup cost

Similarly, optimization was carried out for cleanup cost using both physically based and
ANN models. The comparison of results for two well case is shown in Figs. 5(a-b). The
performance of ANN model is extremely good in this case. When GA was used, the ANN
model gave even lower cleanup cost than the physically based model. However, it is
important to note that the lower value of cleanup cost given by ANN does not necessarily
mean that the ANN model is better. This could also be due to the error with which ANN
replicates the physically based model.

6 Conclusion

This study has demonstrated the potential applicability of ANN models in selecting
optimal pumping strategy for contaminated aquifer cleanup. In very short time (17 times
faster than the physically based model in average), the ANN model was able to give
reasonably good solution. The validation result shows that the trained ANNs predicted the
model output (both cleanup time and cleanup cost) to reasonable accuracy. This is true
especially in the lower range of these values where the accurate approximation of the
models is very important for the optimization purpose. The simplicity of the ANN model,
both for its use and for coupling with GO tool, is another advantage of the ANN model.
However, it is clear that the ANN must be trained with data consisting of finer interval of
decision variables, in this case pumping rates, to achieve a better performance. This
obviously requires more effort both for generating the data and for training the network.
Further experiments are therefore recommended, particularly using higher number of
pumping wells, for more comprehensive analysis of the performance of ANN models
trained with different techniques, for example training with different algorithms, different
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number of hidden layers and more importantly using randomly generated data sampled
from practically observable distributions.
The optimization process can also be made more accurate and faster by using the ANN
model for finding the regions in the search space associated with the higher probability of
finding the global minimum, and then using physically based model for further searching
within these regions. Furthermore, the ANN models can also be used advantageously in
the experiments aimed at evaluating the performances of different GO algorithms where
the optimization process needs to be repeated a large number of times.
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