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Abstract: The remediation of groundwater contamination by pumping and injection is generally a long-term and costly strategy. Aquifer
cleanup time is a highly nonlinear and nonconvex function of pumping rates. The cleanup objective often involves minimizing or
constraining the cleanup time or cleanup cost. Linear programming and nonlinear optimization cannot guarantee the global solution. Ir
this study, four global optimizatiofGO) algorithms, including a popular genetic algorithm, are used to minimize both cleanup time and
cleanup cost taking pumping rates and/or well locations as decision variables. Groundwater flow and particle-tracking models
(MODFLOW and MODPATH and a GO tool(GLOBE) are used. Real and hypothetical contaminated aquifers are considered for
application. The results are satisfactory and show that GO techniques can be widely applied in groundwater remediation strategy an
planning. The comparison of the performance of algorithms did not reveal a clear winner. The results also show that in the particle-
tracking method, excluding few particles from removal can significantly reduce the cleanup time.
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Introduction timization is usually based on the standard linear programming

The contamination of groundwater is a widespread problem and@nd nonlinear optimization tools. Some examples of the applica-
requires huge investments for its remediation. Many remedial ap-tion of this approach include Bogacki and Dani€l989, Green-
proaches are applied to the problem. In the United States, forwald and Gorelick(1989, Chang et al.(1992, Jonoski et al.
example, a removal actidfie., contaminant removal to clean up  (1997; and Willis and Yeh(1987. However, the fact that the
the aquifey is most typically sought by members of the public OPtimization problem of pumping strategy for the contaminant
who are affected by a groundwater contamination problem. The Plume removal is highly nonlinear and nonconvex has led some
objective of this approach is to remove as much contamination asfeésearchers to use the so-called global optimizat®®) tech-
possible by pumping and injection and return the groundwater to niques. In other areas, for example in optimization of industrial
its original quality. Despite the fact that the cleanup approach is design, various GO techniques have been successfully used since
very expensive and generally takes many years to clean up, it is inthe 1960s. With high-speed workstations and PCs, the accessibil-
many cases desirable and unavoidable, considering the humaty of GO increased enormously. In civil engineering, genetic al-
health and environmeriGorelick et al. 1998 gorithms (GA) (Michalewicz 1996 became very popular in the
Gorelick et al.(1993 described two methods to find the opti- €nd of the 1980s and allowed many researchers and practitioners
mum solution, namely(1) combination of engineering judgement to use a relatively simple and effective optimization technique.
and trial-and-error iteration process; a@j combination of simu- The study of Ahlfeld and Spron¢l998 examined the pres-
lation and optimization. The first approach lacks mathematically ence of nonconvexity and the multiple extrema in the feasible
formalized checks and balances that might be used to ensure thategion defined by the concentration response function and showed
the hydraulic design is optimal, both with respect to cost and that the response surface is nonconvex and contains multiple local
physical control of the contaminant plume. extrema over a wide range of parameter values. Karatzas and
In the second approach, the simulation is carried out with Pinder (1993 presented an outer approximation method as an
available groundwater models for flow and transport, and the op- alternative to the traditional method of linear/nonlinear minimiza-
tion algorithms. Aral and Gua(l996 used a differential genetic
IResearch Fellow, International Institute for Infrastructural, Hydraulic @l90rithm and applied to a hypothetical nonhomogeneous aniso-
and Environmental Engineerin@HE), P.O. Box 3015, Delft, The Neth-  tropic aquifer. El Harrouni et al1996 presented a similar work

erlands. E-mail: maske@ihe.nl by using genetic algorithm and a dual reciprocity boundary ele-
2Lecturer, IHE, P.O. Box 3015, Delft, The Netherlands. E-mail: ment method for groundwater pumping optimization and param-

jon@ihe.nl eter estimation. Further, Wang and Zh&a§97 coupled ground-
SAssociate Professor, IHE, P.O. Box 3015, Delft, The Netherlands. water flow and solute transport codes MODFLQWcDonald

E-mail: sol@ihe.nl and Harbaugh 1988&nd MT3D with genetic algorithm for opti-

Note. Discussion open until April 1, 2003. Separate discussions must ization and applied to a hypothetical and a field-scale problem.
be submitted for individual papers. To extend the closing date by one Some researchers, e.g., Rogers etl£195, applied artificial neu-
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nated groundwater. The algorithms used in the comparison wereity of this function(travel time and pumping rates mainly due

described under three classés) evolutionary algorithmsj2)
direct search methods; an@) derivative-based optimization
methods.

This paper presents the use of different GO algorithms to de-
termine the optimized combination of pumping rates and well
locations for the removal of a contaminant plume using particle
tracking. Simulation is carried out considering the contaminant
transport travel times based on advection. The four GO algo-
rithms used are:l) GA; (2) an adaptive cluster covering
(ACCO); (3) the controlled random seardl€RS4; and (4) a
version of multistart clusteringcalled Multis. Two commonly
used modeling codes MODFLOW and MODPATHPollock
1994 are used for groundwater flow and particle-tracking, re-
spectively, and the GLOBE system is used for optimization. Use
of GO algorithms with particle-tracking methods for contaminant
plume removal has not been reported in the previous work. Also,
all the publications cited above have used GO algorithms while
considering aquifecleanup cosas an objective function taking a
fixed time period of remediation. Sometimes, however, it is nec-

to: (1) the integration over the flow pa®(q), which is a function

of pumping rates; an@®) the velocity in the denominator of the
integral, which also is a function of pumping rates. This definition
of cleanup time based on particle tracking accounts only for the
advective transport of contaminants, and neglects dispersion and
sorption. The readers are referred to Greenwald and Gorelick
(1989 for a detailed explanation of the nonlinear and multiple
extremum nature of the problem.

Global Optimization Algorithms

Global optimization is aimed at finding the best solution of con-
strained optimization problems, whidimay) have various local
optima (Pinter 1996. The GO approach has particular advantage
for problems in which other optimization techniques have diffi-
culties due to the existence of multiple extrema and/or difficulties
in defining functions analytically. A GO problem with box con-
straints can be considered @olomatine 1998 find an optimizer

x* such that

essary to clean up contamination as fast as possible for reasons

not directly related to costs, such as a legal requirement or a

public relations campaigfGreenwald and Gorelick 1989There-
fore, in this study, the simulation-optimization is carried out for
both cases with(1) aquifercleanup timeand(2) aquifercleanup
costas objective functions. In addition, while most of the previ-
ous work uses only variants of genetic algorithi@As), this

paper presents comparative evaluations of various GO algorithms.

The method is illustrated with applications to a hypothetical and a
real aquifer.

Simulation-Optimization Approach

Flow and Particle Tracking Models

In pump-and-treat remediation, pumping rates and well locations

are major decision variables. For a given set of decision variables,

a flow model updates the hydraulic he@dlstate variableand a
particle-tracking model computes the particle travel time and path
lines. The equation describing the 3D movement of groundwater
assuming constant density is expressed as

d K ah d K ah oh oh 1

x| Koy +W Yoy + 257 | tAs=S;r (D)
whereK,,, K,, andK,,=principle components of the hydraulic
conductivity alongx, y andz coordinate axesy=hydraulic head;
gs=source/sink termS,=specific storage; ant=time.

The total cleanup time of the contaminant plume can be

Jz

f*=f(x*)=minf(x)
xeX

®)

where the objective functiof(x) is defined in the finite interval
(box) region of then-dimensional Euclidean space as

X=[xeR": as=x=<b (for each dimension

(4)

This constrained optimization problem can be transformed to
an unconstrained optimization problem by introducing a penalty
function with a high value outside the specified constraints. In
real-life cases, when the exact value of an optimizer is difficult to
find, we speak about its estimate and, correspondingly, about the
minimum estimate.

There are various possible algorithms to search for global
minima in GO problems. Comprehensive coverage of these algo-
rithms is found in Pinte¥1996 and Ton and Zilinskas(1989.
Probably the most popular GO algorithm is the GA. The four GO
algorithms used in this study are briefly described below. These
and other GO algorithms used in the applied GLOBE system and
the issues of tuning their parameters are discussed in more detail
by Solomatine(1998, 1999. Application of GLOBE in ground-
water model calibration is discussed by Solomatine et1899.

Genetic Algorithms

Genetic algorithmg$GA) belong to a wider class of evolutionary
algorithms(EA) that are based on the idea of modeling a search
process of natural evolution, although these models are crude
simplifications of biological reality. EA search is directed with a
random element to avoid local minima and uses the terminology

viewed as a function of the transport of particles defined at the ¢, biology and genetics. For example, given a random sample
plume boundary. When every particle reaches a pumping well, the o 40 jteration, pairs of parent individugmints, selected on
plume is said to be removed. Hence, the travel time of the slowesty,o ,asis of their “fitnessfunction valug, recombine and gen-

particle is assumed to be the total cleanup time. Considering theg ate new “offspring.” The best of these are selected for the next
tran;port by advection on]y, the tllmellt takes for.an unretarded generation. Offspring may also “mutate,” that is, randomly
particle to flow to a pumping well is given by the integral along  change their position in space. The idea is that fit parents are
the pgrtlcle flow patt(q) as follows (Greenwald and Gorelick jixely 't produce even fitter children. EAs have been developed in
1989: three variations(1) evolution strategiesES); (2) evolutionary
programming(EP); and (3) genetic algorithmgGA). In the last
decade, GAs gained a lot of popularity as a general purpose op-
timization algorithm. In this work, the implementation of a
whereg=vector of pumping and injection rategg) =travel time canonic GA was use@Michalewicz 1996. Several versions of

of the particle;v(q)=velocity in the direction of flow; and GAs and sets of parameters were compdnedtation rate, cross-
ds=incremental distance in the direction of flow. The nonlinear- over probability, population size, elc.including versions with

1
t(Q)=LWdS @
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the “tournament” and “fitness rank” selection, and the one that new best point is found, it is “rewarded” by continuing search
performed the best was chosen for this study. This is a variant ofaround it; new points are sampled from the multidimensional
GA with the “fitness rank” selection, one-point crossover, 15-bit beta-distribution with the peak “above” the found best point.
coding of variables, bit mutation, and preservation of the best
points (stringg discovered so fatelitism). To prevent redundant

reevaluations, in each generation checks are made for the appeaernm/zat’on Problem Formulation

ance of repetitive strings. _ ~ Two optimization problems are formulatett) minimization of
Termination condition appeared to be an important factor in- cleanup costinstallation cost and operation plus maintenance
fluencing the efficiency and effectiveness of GMichalewicz cost of pumping and wells and (2) minimization of cleanup

1996, p. 67. Classical GA is normally stopped when a large time. In both cases, the pumping rates and the well locations are
proportion of the population has a similar minimum estimate. Our decision variables. The upper and lower limits in pumping rates

experience is that this simplified condition leads to a very large and the specified area for well locations are considered as con-
number of function evaluations without an improvement in accu- straints. In addition, in the case of cost minimization, the limita-

racy. Several termination conditions have been tested and the ongjon in cleanup time is also introduced as a constraint.

that was adopted involves the fractional proximity of the found

minimum estimate to the averaged function value of the predeter'Optimization of Cleanup Time

mined percentage of the population, the number of iterations ¢ the aquifer cleanup time is to be minimized the objective func-
without improvement in the function value, and the total number tion and the constraints can in general be defined as

of iterationsSNijemmax - SO GA is run while Nie<Nijemax) and

[ (AvgBestyie,— AVgBeSkier— 1)/ AvgBeskjier< 10~ °] and (no im- minimize t=f(d,d2,...,0n,C1,11,C2,T2,---.Cn )
provement in global minimum estimator in 15 successive genera-

. . ; subject to qmin=< o PYRN PO ES

tions) where AvgBesti., is the average function value for the J Gmin=(G1: 0z Gn) = Gmax (5)

20% of the best strings in iteratiddg, . Cmin=(C1,C2,...,Cn) =Cax
rmins(rlurZu---:rn)grmax

Multistart and Clustering
The basic idea of the family of multistart methods is to apply a where t=cleanup time;q;,d,,...,q,=pumping rates in wells
search procedure several times and then to choose the global opt.2,...n; €1,Cy,...,.co,=column number (on grid) of wells
timum. One of the popular versions of multistart used in GO is 1,2,...n; rq,r,,...,r,=row number(on grid of wells 1,2,..n;
based on clustering, that is creating groups of mutually close Umin,Gmax=MiNimMum and maximum ranges in pumping rates;
points that, hopefully, correspond to relevant regions of attraction Cpin,Cmax=ranges in column number for well locations; and
of potential starting point§Torn & Zilinskas 1989. The region I min Fmax=ranges in row number for well locations.

(area of attraction of a local minimur* is the set of points iX

starting from which a given local search procedBreonvergesto ~ Optimization of Cost

x*. For the GLOBE systems applied in the present study, a mul- The well installment costcapital cost and the operation and
tistart algorithm calledMultis was implemented. For local search maintenance cost per yegnnual costcan be expressed as a

it uses gradient-free Powell-Brent seaf@hess et al. 1990 function of total pumping rates as

n
Adaptive Cluster Covering (ACCO) capital cost Clz qr. (6)
This algorithm(Solomatine 199pis designed as a workable com- i=1

bination of generally accepted ideas of reduction, clustering, and
covering. First groups of mutually close points in search space are
identified (they represent the most promising subdomains in The constant€, andC, depend on the unit ratéper unit pump-
which to continue the global seajchnd within each of them  ing ratg@ of capital cost and annual cost, respectively. The expo-
rectangular subdomains are associated. Then each subdomain isentsm andr are generally less than unity, and they account for
covered randomly, i.e., a certain number of points are sampled.the rate of changégenerally decreagen per unit capital and
The values of the objective function are then assessed at eaclannual costs, respectively, with respect to the increase in total
point. Covering is repeated multiple times; each time the subdo- pumping rate. Th&) is the total pumping rate of all wells, argl
main is progressively reduced in size and shifted towards concen-is the pumping rate of individual wells with being the number
trations of points with smallest function values. Variation of the of wells. Thus, for the optimization of the total cost of well in-
ACCO algorithm, named ACCOL, continues with several local stallment and pumping the objective function can be expressed as
searches started from the “best” points found in ACCO phase. a function of pumping rates. Expressing the total cost in present
worth the objective function and the constraints are defined as

operation and maintenance cost per ye@pQ' @)

Controlled Random Search(CRS4) n t ;
The algorithms(Price 1983; Ali and Storey 1994f controlled minimize C myc
random searchCRS are based on the principle in which the new 121 i ZKEO (1+D)¥

(8)

trial point in searci{parameterspace is generated on the basis of

a randomly chosen subset of previously generated points. At each
iteration, a simplex is formed from a sample, and a new trial point The constraints in pumping rates and position arrays apply simi-
is generated as a reflection of one point in the centroid of the larly as in the optimization of cleanup time.

other points in this simplex. If the worst point in the initially In Eq. (8), tis the cleanup time in years, aidis the discount
generated set is worse than the new one, it is replaced by therate(discounted fronkth yea). Thet,,.is the maximum limit in
latter. The ideas of CRS algorithms have been further extended bycleanup time. If the resulting cleanup time is greater than the
Ali and Storey(1994 producing CRS4 and CRS5. In CRS4, ifa  maximum limit, instead of using Ed8), high cost called a pen-

subject tot=<t,y
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Fig. 1. Hypothetical aquifer: Plume area and pumping wells wihinitially fixed well locations;(b) optimized well locations when potential
well locations are outside the plume argRS4 solutioi and (c) optimized well locations when potential well locations are both inside and

outside the plume areg@A solution

alty cost is used. In this case, the penalty cost was set greater thari998, 2002 is used for optimization. Brief descriptions about
the cost obtained when all the pumps are operated to their full these codes are given below.

capacities for the period df, .
The capital cost, Eq(6) can further be separated into fixed

MODFLOW is a 3D finite-difference groundwater flow model.
It has a modular structure that allows it to be easily modified to

cost and varying cost. But this fixed cost is more site specific and adapt the code for a particular application. MODFLOW simulates
requires more detailed information about the cost in the area con-steady and nonsteady flow in an irregular shaped flow system in
cerned. For this type of study, however, it is reasonable to expressyhich aquifer layers can be confined, unconfined, or a combina-

the capital cost as a function of pumping rates.

Tools and Techniques

Tools Used

The groundwater simulation codes MODFLOWcDonald and
Harbaugh 198Band MODPATH(Pollock 1994 developed by the
U.S. Geological Survey are used for flow and particle-tracking,
respectively. The global optimization tool GLOBSolomatine

tion of confined and unconfined. Flow from external stresses,
such as flow to wells, areal recharge, evapotranspiration, flow to
drains, and flow through riverbeds can be simulated. Specified
head and specified flux boundaries can be simulated. It is cur-
rently one of the most used numerical models for groundwater
flow problems.

MODPATH is a particle-tracking postprocessing package that
was developed to compute 3D flow paths using output from
steady-state or transient groundwater flow simulation by
MODFLOW. MODPATH uses a semianalytical particle-tracking
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Fig. 2. lllustration of nonconvex function of aquifer cleanup time and pumping rates
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scheme that allows an analytical expression of the particle’s flow
path to be obtained within each finite-difference grid cell. Particle
paths, their velocities and the travel time are computed by track-
ing particles from one cell to the next until the particle reaches a

boundary, an internal sink/source, or satisfies some other termina-

tion criterion.

GLOBE is a PC-based tool built to apply GO techniques origi-
nally to the problems of model calibration. GLOBE can be con-
figured to use an external program as a supplier of the objective
function values. Currently, GLOBE has nine GO algorithms,
which include: two versions of controlled random seaf€fiRS2
and CRS4, two multistart algorithmgMultis and M-Simpley,
adaptive cluster coveringhCCO), adaptive cluster covering with
local searche$ACCOL), adaptive cluster covering with descent

450
400 -
350 -
300 -
250 -
200 -
150

Cleanup time (days)

0.0 300.0 600.0 900.0 1200.0 1500.0

Pumping rate of Well B (m3/days)
(Pumping rates of wells A, C and D are constant)

Fig. 3. lllustration of cleanup time variation with pumping rate

(ACD), adaptive cluster covering with descent and local searches
(ACDL), and a version of GA, which performed best as discussed
earlier.

Coupling of MODFLOW and MODPATH with GLOBE

Using the GLOBE as an optimizer requires coupling it with the
simulation modein this case MODFLOW and MODPATHso

that they execute as a single application without the necessity of
interactive input during computation. To do this, two sets of ex-
ecutable programs are needed. The first program converts th
GLOBE output file(searched values of paramefeas an input
file to MODFLOW, whereas the second program takes the output
from MODPATH and computes the objective function value to
feed to GLOBE. The coupled model starts from the GLOBE and
runs in a loop until the selected algorithms generate an acceptabl
solution and a stopping criterion is met.

Application Examples

The method is illustrated by applying it to two contaminated aqui-
fer systems—one hypothetical and one real. The hypothetical cas
is used only for testing the proposed technique. Therefore, it is
formulated as a very simple aquifer that can be remediated in a
relatively short period. The description of the aquifer and the

results obtained in each are discussed separately.

Hypothetical Aquifer System

General Description

A hypothetical unconfined aquifer system is formulated. The size
of this aquifer is 1,5081,500 m with an average depth of 34.5
m. In plan, the square uniform grid size of’200 m is used. Two
types of boundary conditions—imperviogsr zero fluy at two
sides and constant head boundaries at the other two sides—ar

Table 1. Hypothetical Aquifer: Cleanup Time Optimization—Pumping

€

(S

€

specified. The hydraulic conductivity varies from 2 to 30 m/day.
The effective porosity of the soil is taken as 0.2, and recharge of
0.0005 m/day is specified throughout the area. A contaminant
plume area is defined in the middle of the aquifer, which covers
28 grids in plan. A portion of the aquifer showing the plume area
and pumping wells is shown in Fig(d).. The plume boundary is
defined by placing particles on all external faces. In total, there
are 846 particles with 9 particles on each such face.

lllustration of the Relationship Between Pumping Rates and
Cleanup Time

To illustrate graphically the relationship between pumping rates
and plume removal time, a plot of cleanup time against two vary-
ing pumping rates is shown in Fig. 2. The pumping was done by
four pumping wells positioned in a line, A, C, D, and B, respec-
tively. A constant pumping rate of 1,000%day is applied in the
two inner pumping wells C and D, whereas the pumping rates in
the two outer wells(A and B) are varied in the interval of 50
m%day. The range of pumping rates in these wells is between 0 to
1,500 ni/day. Furthermore, the cleanup time is also computed to
illustrate the variation in cleanup time by varying the pumping
rate in only well B(Fig. 3). In this case, the constant pumping
rate of 1,000 riday is used in all other three wells. Figs. 2 and 3
clearly indicate the nonlinear and nonconvex nature of the
cleanup time response function when more than one pumping
well is used. Similar results have been shown by Greenwald and
Gorelick (1989.

Optimization and Results

Optimization is carried out to minimiz€1) cleanup time and2)
cleanup cost with pumping rates and well locations as decision
variables. In both cases, four wells are used for pumping the
aquifer with initially assumed positions across the regional flow

Rates as Decision Variable

Pumping Ratesm°®/day)

GO Number of Cleanup

algorithms model runs time (day9 Well-1 Well-2 Well-3 Well-4 Total
Without 1,039 1,500 1,500 1,500 1,500 6,000
optimization

GA 509 192 1,210 1,070 1,100 740 4,120
ACCO 353 191 1,480 1,000 950 1,190 4,620
CRS4 658 188 1,170 1,120 1,070 760 4,120
Multis 1,583 207 390 1,290 930 970 3,580
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Table 2. Hypothetical Aquifer: Cleanup Time Optimization—Pumping Rates and Well Locations as Decision Variables

Pumping Rategm®/day) and

GO NunTO%eerl of Cl,[?riZUp Well Locations(row, column

algorithms runs (day9 Well-1 Well-2 Well-3 Well-4 Total

Wells outside

the plume

GA 948 153 1,310 730 970 580 3,590
(35, 39 (38, 39 (40, 39 (43, 39

ACCO 630 153 1,310 970 1,020 150 3,450
(35, 39 (38, 34 (41, 34 (42, 34

CRS4 1,400 151 1,160 730 390 630 2,910
(36, 39 (38, 39 (39, 39 (40, 39

Wells inside

& outside the

plume

GA 1,352 45 1,000 740 710 520 2,970
(36, 37 (37, 37 (39, 37 (39, 38

ACCO 759 54 1,000 900 860 480 3,240
(34, 35 (37, 39 (39, 39 (40, 39

CRS4 982 51 550 1,020 260 760 2,590
(37, 38 (38, 39 (39, 39 (40, 37

Note: The values in parentheses are row and column numbers of the well position.

direction as shown in Fig.(&). For each well, the range of pump- reduced considerably by selecting appropriate well positions

ing rates are defined from 0(Bo pumping to 1,500 ni/day. The (Table 2. Huang and Mayef1997 explicitly used well locations

results are discussed below. as decision variables and showed that it is important. The result of
Cleanup time is calculated without using the optimization this study coincides with their conclusion. The results obtained

technique keeping the maximum pumping réte500 n¥/day) in from three algorithms(GA, ACCO, and CRS{are shown in

all wells with the initially assumed locations. The cleanup time Taple 2, and the well locations for the best solutions are presented

for this case is found to be 1,080 days. Then, the GO technique isj, Figs. Ab) and 1c). The algorithm Multis is dropped from this

applied by varying only the pumping rates while maintaining the 5 fyrther experiments, as it could not terminate the optimization
initial fixed well locations. Four algorithm@GA, ACCO, CRS4, process.

a_md Mu.ltiS are used. The be_st optimal solutio(rzmuifer cleanup The aquifer system is then optimized with respect to the total
t|r_ne) given by all f_our algorithms are gpproxmately 200 days cost of cleanup, Eq@8). In this case, only the pumping rates are
with the total pumping ratesum of pumping rates of four wejls taken as decision variables. The coefficieBtsand C, are as-

3 H _
between 3,580 and 4,620"fday (Table 1. Interestingly, all op sumed to be 300 and 730 respectively. The coeffiaierg taken

timal solutions and corresponding total pumping rates are sub- . .
stantially lower than the cleanup time of 1,080 days resulting as.0.75 whereas thes taken eqqal to 1. Thg annual d|§count rate
D is taken as 8.0%. The resulting cost will have arbitrary mon-

from the total pumping rate of 6,000%day. In this case, CRS4 - I o . .
gives the best resultl88 days requiring 658 model runs and etary unit(MU). In addition to the limit in maximum pumping

ACCO uses the fewest model ruf853), resulting in 191 days of ~ "ate of 1,500 rday, the maximum limit in cleanup time of 5
cleanup. years is introduced as a constraint.

Optimization is also carried out varying both the pumping ~ Among the three algorithms used, CRS4 provides the most
rates and well locations. Two cases are used, one with potentialcost effective solution with the cleanup cost of 15,43@ble 3.
well locations outside the plume area and one with potential lo- This solution removes the plume in 1,482 da§<6 years The
cations both inside and outside the plume area. The results clearlybest solution given by the same algorithm when optimizing in
show that well locations are equally important for the optimized cleanup timgTable 1) requires 24,913, but removes the plume in
design of aquifer cleanup system and that the cleanup time can bel88 days only.

Table 3. Hypothetical Aquifer: Cleanup Cost Optimization—Pumping Rates as Decision Variables

Cleanup Pumping Rate$m®/day) Cleanup CostMU)
GO time Well-1 Well-2 Well-3 Well-4 Optimization Optimization
algorithms (days in cost in time?
GA 462 55 83 1,350 0 17,368 25,261
ACCO 455 28 1,461 55 28 18,079 27,985
CRS4 1,482 28 28 413 28 15,437 24,913

&This cost is calculated for the cleanup time and pumping rates from Table 1.

436 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT / NOVEMBER/DECEMBER 2002



Assumptions, Hydraulic Parameters, Boundary Conditions

; and the Plume Boundary

EEEpRE A single-layered unconfined heterogeneous isotropic aquifer is

boundary Canal ™ , | assumed. The total area of 1,040 by 880 m is considered for

simulation with square uniform grid of 220 m. The boundary

condition along the north and ed#tig. 4) is defined as the con-
( stant head boundary. On the West Side, a zero-flux boundary is

Constant head used except for the three cells next to the canal where a constant

Constant head boundary

Fnat hesaany head boundary is specified. On the southern side, zero-flux
= boundary and constant head boundary are defined. All rivers and
1 canals are incorporated for the simulation specifying appropriate
Inactive zone i bZ:ll;‘l)l(lll:rxy ﬂUXes. . . . .. .
i General head bpundary I An extreme variation in the hydraulic conductivity is observed

H ,,l,,,m‘,,“,,“,””, = / with the minimum of 0.75 m/day to the maximum of 75 m/day.

In terms of recharge rates, the area is divided into three
Fig. 4. Real aquifer: Plume area, boundary conditions and rivers/ sectors. Sector 1 reflects the regional recharge rate of
canals positions 2.074< 10 *m/day. Sector 2 is the plume area with the recharge
rate of 1.03% 10~ *m/day (half of the regional value whereas
Sector 3 covers the landfill area with an impervious liner, and no
recharge is considered.

The plume boundary is defined by specifying particles on the
external faces of all grid cells containing the plume. Each such
face has 9 particles, and altogether 990 particles envelop the
plume. The illustration of the plume area together with the initial
locations of the pumping wells is shown in Figah As seen in
this figure, all potential well locations are considered outside the
plume area. The area inside the plume is assumed inaccessible for
well construction.

Real Aquifer System

General Description

A contaminated aquifer in Europe is considered. This aquifer is
contaminated due to the waste disposal from industries, mainly
the chemical works. Two dumping sites, one for solid waste of
about 300 by 60 m in size and the other for distillation liquid
residues of about 60 m in diameter, are responsible for the con-
tamination of the aquifer. The site was used for waste disposal Optimization and Results

without any protection against leachate for 15 years. Due to theIn this aquifer area, as given by test wells, the maximum yield
lack of information on the exact plume dimensions, the entire areafrom each well is only 25.92 Hday. Therefore, to consider
underneath these dumping sites is considered as the plume. Th@umping rates as a decision variable has no significance. It is for
area of interest comprises quaternary fluvial sediments of thethis reason that the optimized solution is computed considering
river. The sediments consist of clayey loam with a varying con- only the well locations as a decision variable. Nine pumping wells
tent of sand, sandy clay, and locally clayey fine-grained sand. with the initial positions shown in Fig.(8) are assumed, and the
Their thickness varies between 2.5 and 8.0 m. The groundwaterconstant pumping rate of 25.92%ay is assigned to each well.
flow is affected by the seepage from the old Elbe River and drain- In this case, optimization in cleanup time is carried out using two

age caused by a canal. algorithms, GA and ACCO. For the initially located well posi-
[ ] ®
[ ] [ @
Plume area
® ] [  Potential well locations
Fig.5 (a) (@] Selected well locations
o|® |©®
o
[ )
[
o e
Fig. 5 (b)

Fig. 5. Real aquifer: Plume area, potential well locations and pumping wells (&tinitially fixed well locations, andb) optimized well
locations(GA solution

JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT / NOVEMBER/DECEMBER 2002 / 437



Table 4. Real Aquifer: Cleanup Time Optimization—Well Locations -
as a Decision Variable 100.0
90.0 |

Well Location (row, column

— : - g 80.0

Initial Given by Given by £ 700
Pumping well (assumepl GA ACCO E- 60.0
Well-1 (21, 16 (21, 13 (21, 14 § 50.0
Well-2 (21, 23 (21, 14 (21, 16 g 400
Well-3 (22, 11 (21, 16 (21, 23 £ 300
Well-4 (22, 2) (22,29 (22,12 8 200
Well-5 (22, 24 (22, 29 (22, 29 & 100
Well-6 (23, 26 (23, 26 (22, 26 0.0
Well-7 (25, 26 (24, 26 (26, 22 100% 99%  98%  97% %%  95%
Well-8 (26, 13 (26, 25 (26, 23 Percentage of patricles removed
Well-9 (26, 18 (26, 26 (26, 27
Cleanup time(year$ 35 13 14.8 Fig. 6. lllustration of the reduction in plume removal time when
Number of model runs 1,158 860 some particles are excluded

tions, the resulting cleanup time is 35 years. The optimal solu- mentation, proper tuning of algorithms, etc. The authors did their
tions given by GA and ACCO are 13 and 14.8 years, respectively. best to ensure equal “starting conditions” for all four algorithms.
The result is shown in Table 4. In this example, GA gives the best Solomatine(1998, 1999 compared the performance of several
solution but ACCO performs faster. The optimized well locations GO algorithms using three performance indicatots:Effective-
found by GA are shown in Fig.(b). ness(how close the algorithm gets to the global minimum, or, if
In particle-tracking methods, some particles may enter cells the global minimum is unknown, how low its found estimate is
with very low or no outflow or travel through very long paths and (2) Efficiency (running time of an algorithm measured by the
thereby take a very long time to be removed. Because of thesenumber of function evaluations needéassuming the running
particles, the cleanup strategy may be unreasonably expensive. Itime of the algorithm itself is negligible compared to the time
practice, however, it is almost impossible to remove 100% con- required for the function evaluatignand (3) Reliability (robust-
tamination from an aquifer. Therefore, to exclude the effect of nes$ of the algorithm measured by the number of successes in
such particles in total cleanup time, the computation is repeatedfinding the global minimum, or at least approaching it sufficiently
considering only 98% particle removal for the well configuration closely. The comparison of computational performance of optimi-
shown in Fig. %a). Significantly enough, more than 20% reduc- zation methods carried out by Yoon and Shoemgk®&99 are
tion in cleanup time is achieved by excluding 2% of the particles. also based on similar criteria.
The comparison is shown in Table 5. It is to be noted that there is  In this study, four algorithms are compared based only on
no established relationship between the percentage of particles'effectiveness” and “efficiency” criteria. Due to the popularity of
removed and the concentration of the contaminants. GA, special attention was given to the selection of the best per-
It is difficult to say how many particles to exclude, and the forming version and its proper tuningovered above The hy-
decision should be made based on the designer’s judgment angothetical aquifer with the well locations shown in Figalwas
the particular situation. To better understand the effect of exclud- used as an example. The optimum solutions obtained from differ-
ing some particles, the travel time is computed for different per- ent algorithms are quite close but require noticeably different
centages of particle removal for the same well configuration, Fig. number of model runs. It is necessary to note that in different
5(a). In this example, the cleanup time is reduced to 87% consid- cases or runs the best results are obtained from different algo-
ering 99% removal of the particles, and it is reduced to 60.7% for rithms. In all cases, ACCO was the fastest to reach the solution
95% particle removal. The result is illustrated in Fig. 6. with 315 to 759 model runs which is, on an average, less than two
thirds the model runs of GA and CRS4. The GA and CRS4 re-
quired 509 to 1,352 and 473 to 1,400 model runs, respectively.
Comparison of Algorithms Such differences in model rurisomputation timg may become
critical when more complex groundwater models or systems are
It would be important for a practitioner to have an idea which GO used. However, CRS4 and GA were more effective, i.e., were able
algorithm to use. Comparison of algorithms is always a difficult to find optimum more accurately.
task. It depends not only on the criteria used, but also on the Fig. 7 illustrates a typical run. It must be stated that the com-
characteristics of the particular case studies used, details of implesparison presented here is based only on one run. Proper compari-

Table 5. Real Aquifer: Comparison of Cleanup Time for 100 and 98% Particle Removal

Particles Removal Particles Removal
100% 98% Reduction in
GO Number of Cleanup Number of Cleanup cleanup time
algorithms model runs time (years model runs time (years (%)
GA 1,158 13.0 744 10.0 23.0
ACCO 860 14.8 989 11.3 23.6
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280 many particles to exclude is solely dependent on the designer’s
judgment and the particular situation.

o GA
g @ ACCO
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