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Abstract: The remediation of groundwater contamination by pumping and injection is generally a long-term and costly strategy.
cleanup time is a highly nonlinear and nonconvex function of pumping rates. The cleanup objective often involves minimi
constraining the cleanup time or cleanup cost. Linear programming and nonlinear optimization cannot guarantee the global so
this study, four global optimization~GO! algorithms, including a popular genetic algorithm, are used to minimize both cleanup tim
cleanup cost taking pumping rates and/or well locations as decision variables. Groundwater flow and particle-tracking
~MODFLOW and MODPATH! and a GO tool~GLOBE! are used. Real and hypothetical contaminated aquifers are considere
application. The results are satisfactory and show that GO techniques can be widely applied in groundwater remediation str
planning. The comparison of the performance of algorithms did not reveal a clear winner. The results also show that in the
tracking method, excluding few particles from removal can significantly reduce the cleanup time.
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Introduction
The contamination of groundwater is a widespread problem
requires huge investments for its remediation. Many remedial
proaches are applied to the problem. In the United States,
example, a removal action~i.e., contaminant removal to clean u
the aquifer! is most typically sought by members of the pub
who are affected by a groundwater contamination problem.
objective of this approach is to remove as much contaminatio
possible by pumping and injection and return the groundwate
its original quality. Despite the fact that the cleanup approac
very expensive and generally takes many years to clean up, it
many cases desirable and unavoidable, considering the hu
health and environment~Gorelick et al. 1993!.

Gorelick et al.~1993! described two methods to find the opt
mum solution, namely:~1! combination of engineering judgemen
and trial-and-error iteration process; and~2! combination of simu-
lation and optimization. The first approach lacks mathematic
formalized checks and balances that might be used to ensure
the hydraulic design is optimal, both with respect to cost a
physical control of the contaminant plume.

In the second approach, the simulation is carried out w
available groundwater models for flow and transport, and the
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timization is usually based on the standard linear programm
and nonlinear optimization tools. Some examples of the appl
tion of this approach include Bogacki and Daniels~1989!, Green-
wald and Gorelick~1989!, Chang et al.~1992!, Jonoski et al.
~1997!; and Willis and Yeh~1987!. However, the fact that the
optimization problem of pumping strategy for the contamina
plume removal is highly nonlinear and nonconvex has led so
researchers to use the so-called global optimization~GO! tech-
niques. In other areas, for example in optimization of indust
design, various GO techniques have been successfully used
the 1960s. With high-speed workstations and PCs, the acces
ity of GO increased enormously. In civil engineering, genetic
gorithms ~GA! ~Michalewicz 1996! became very popular in the
end of the 1980s and allowed many researchers and practitio
to use a relatively simple and effective optimization technique

The study of Ahlfeld and Sprong~1998! examined the pres-
ence of nonconvexity and the multiple extrema in the feasi
region defined by the concentration response function and sho
that the response surface is nonconvex and contains multiple
extrema over a wide range of parameter values. Karatzas
Pinder ~1993! presented an outer approximation method as
alternative to the traditional method of linear/nonlinear minimiz
tion algorithms. Aral and Guan~1996! used a differential genetic
algorithm and applied to a hypothetical nonhomogeneous an
tropic aquifer. El Harrouni et al.~1996! presented a similar work
by using genetic algorithm and a dual reciprocity boundary e
ment method for groundwater pumping optimization and para
eter estimation. Further, Wang and Zheng~1997! coupled ground-
water flow and solute transport codes MODFLOW~McDonald
and Harbaugh 1988! and MT3D with genetic algorithm for opti-
mization and applied to a hypothetical and a field-scale probl
Some researchers, e.g., Rogers et al.~1995!, applied artificial neu-
ral networks~ANN! together with genetic algorithms for the op
timal design of groundwater remediation schemes. Yoon
Shoemaker~1999! presented the comparison of computation
performance of eight optimization algorithms used to identify t
most cost-effective policy for in situ bioremediation of contam

t
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nated groundwater. The algorithms used in the comparison w
described under three classes:~1! evolutionary algorithms;~2!
direct search methods; and~3! derivative-based optimization
methods.

This paper presents the use of different GO algorithms to
termine the optimized combination of pumping rates and w
locations for the removal of a contaminant plume using part
tracking. Simulation is carried out considering the contamin
transport travel times based on advection. The four GO a
rithms used are:~1! GA; ~2! an adaptive cluster coverin
~ACCO!; ~3! the controlled random search~CRS4!; and ~4! a
version of multistart clustering~called Multis!. Two commonly
used modeling codes MODFLOW and MODPATH~Pollock
1994! are used for groundwater flow and particle-tracking,
spectively, and the GLOBE system is used for optimization. U
of GO algorithms with particle-tracking methods for contamina
plume removal has not been reported in the previous work. A
all the publications cited above have used GO algorithms w
considering aquifercleanup costas an objective function taking
fixed time period of remediation. Sometimes, however, it is n
essary to clean up contamination as fast as possible for rea
not directly related to costs, such as a legal requirement o
public relations campaign~Greenwald and Gorelick 1989!. There-
fore, in this study, the simulation-optimization is carried out f
both cases with:~1! aquifercleanup time; and~2! aquifercleanup
costas objective functions. In addition, while most of the pre
ous work uses only variants of genetic algorithms~GAs!, this
paper presents comparative evaluations of various GO algorith
The method is illustrated with applications to a hypothetical an
real aquifer.

Simulation-Optimization Approach

Flow and Particle Tracking Models

In pump-and-treat remediation, pumping rates and well locati
are major decision variables. For a given set of decision variab
a flow model updates the hydraulic head~a state variable! and a
particle-tracking model computes the particle travel time and p
lines. The equation describing the 3D movement of groundw
assuming constant density is expressed as

]

]x S Kxx

]h

]x D1
]

]y S Kyy

]h

]y D1
]

]z S Kzz

]h

]z D1qs5Ss

]h

]t
(1)

whereKxx , Kyy andKzz5principle components of the hydrauli
conductivity alongx, y andz coordinate axes;h5hydraulic head;
qs5source/sink term;Ss5specific storage; andt5time.

The total cleanup time of the contaminant plume can
viewed as a function of the transport of particles defined at
plume boundary. When every particle reaches a pumping well
plume is said to be removed. Hence, the travel time of the slow
particle is assumed to be the total cleanup time. Considering
transport by advection only, the time it takes for an unretar
particle to flow to a pumping well is given by the integral alon
the particle flow pathS(q) as follows~Greenwald and Gorelick
1989!:

t~q!5E
s

1

v~q!
ds (2)

whereq5vector of pumping and injection rates;t(q)5travel time
of the particle; v(q)5velocity in the direction of flow; and
ds5incremental distance in the direction of flow. The nonline
432 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMEN
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ity of this function~travel time and pumping rates! is mainly due
to: ~1! the integration over the flow pathS(q), which is a function
of pumping rates; and~2! the velocity in the denominator of the
integral, which also is a function of pumping rates. This definiti
of cleanup time based on particle tracking accounts only for
advective transport of contaminants, and neglects dispersion
sorption. The readers are referred to Greenwald and Gore
~1989! for a detailed explanation of the nonlinear and multip
extremum nature of the problem.

Global Optimization Algorithms

Global optimization is aimed at finding the best solution of co
strained optimization problems, which~may! have various local
optima~Pinter 1996!. The GO approach has particular advanta
for problems in which other optimization techniques have di
culties due to the existence of multiple extrema and/or difficult
in defining functions analytically. A GO problem with box con
straints can be considered as~Solomatine 1998!: find an optimizer
x* such that

f * 5 f ~x* !5min
xPX

f ~x! (3)

where the objective functionf (x) is defined in the finite interval
~box! region of then-dimensional Euclidean space as

X5@xPR9: a<x<b ~ for each dimension!# (4)

This constrained optimization problem can be transformed
an unconstrained optimization problem by introducing a pena
function with a high value outside the specified constraints.
real-life cases, when the exact value of an optimizer is difficul
find, we speak about its estimate and, correspondingly, abou
minimum estimate.

There are various possible algorithms to search for glo
minima in GO problems. Comprehensive coverage of these a
rithms is found in Pinter~1996! and Törn and Zilinskas~1989!.
Probably the most popular GO algorithm is the GA. The four G
algorithms used in this study are briefly described below. Th
and other GO algorithms used in the applied GLOBE system
the issues of tuning their parameters are discussed in more d
by Solomatine~1998, 1999!. Application of GLOBE in ground-
water model calibration is discussed by Solomatine et al.~1999!.

Genetic Algorithms
Genetic algorithms~GA! belong to a wider class of evolutionar
algorithms~EA! that are based on the idea of modeling a sea
process of natural evolution, although these models are c
simplifications of biological reality. EA search is directed with
random element to avoid local minima and uses the terminol
from biology and genetics. For example, given a random sam
at each iteration, pairs of parent individuals~points!, selected on
the basis of their ‘‘fitness’’~function value!, recombine and gen
erate new ‘‘offspring.’’ The best of these are selected for the n
generation. Offspring may also ‘‘mutate,’’ that is, random
change their position in space. The idea is that fit parents
likely to produce even fitter children. EAs have been develope
three variations:~1! evolution strategies~ES!; ~2! evolutionary
programming~EP!; and ~3! genetic algorithms~GA!. In the last
decade, GAs gained a lot of popularity as a general purpose
timization algorithm. In this work, the implementation of
canonic GA was used~Michalewicz 1996!. Several versions of
GAs and sets of parameters were compared~mutation rate, cross-
over probability, population size, etc.!, including versions with
T / NOVEMBER/DECEMBER 2002
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the ‘‘tournament’’ and ‘‘fitness rank’’ selection, and the one th
performed the best was chosen for this study. This is a varian
GA with the ‘‘fitness rank’’ selection, one-point crossover, 15-
coding of variables, bit mutation, and preservation of the b
points ~strings! discovered so far~elitism!. To prevent redundan
reevaluations, in each generation checks are made for the ap
ance of repetitive strings.

Termination condition appeared to be an important factor
fluencing the efficiency and effectiveness of GA~Michalewicz
1996, p. 67!. Classical GA is normally stopped when a lar
proportion of the population has a similar minimum estimate. O
experience is that this simplified condition leads to a very la
number of function evaluations without an improvement in ac
racy. Several termination conditions have been tested and the
that was adopted involves the fractional proximity of the fou
minimum estimate to the averaged function value of the prede
mined percentage of the population, the number of iterati
without improvement in the function value, and the total num
of iterationsNiterMAX . So GA is run while (Niter,NiterMAX) and
@(AvgBestNiter2AvgBestNiter21)/AvgBestNiter,1025# and ~no im-
provement in global minimum estimator in 15 successive gen
tions! where AvgBestNiter is the average function value for th
20% of the best strings in iterationNiter .

Multistart and Clustering
The basic idea of the family of multistart methods is to apply
search procedure several times and then to choose the globa
timum. One of the popular versions of multistart used in GO
based on clustering, that is creating groups of mutually cl
points that, hopefully, correspond to relevant regions of attrac
of potential starting points~Törn & Zilinskas 1989!. The region
~area! of attraction of a local minimumx* is the set of points inX
starting from which a given local search procedureP converges to
x* . For the GLOBE systems applied in the present study, a m
tistart algorithm calledMultis was implemented. For local searc
it uses gradient-free Powell-Brent search~Press et al. 1990!.

Adaptive Cluster Covering „ACCO…

This algorithm~Solomatine 1999! is designed as a workable com
bination of generally accepted ideas of reduction, clustering,
covering. First groups of mutually close points in search space
identified ~they represent the most promising subdomains
which to continue the global search! and within each of them
rectangular subdomains are associated. Then each subdom
covered randomly, i.e., a certain number of points are samp
The values of the objective function are then assessed at
point. Covering is repeated multiple times; each time the sub
main is progressively reduced in size and shifted towards con
trations of points with smallest function values. Variation of t
ACCO algorithm, named ACCOL, continues with several loc
searches started from the ‘‘best’’ points found in ACCO phase

Controlled Random Search„CRS4…
The algorithms~Price 1983; Ali and Storey 1994! of controlled
random search~CRS! are based on the principle in which the ne
trial point in search~parameter! space is generated on the basis
a randomly chosen subset of previously generated points. At
iteration, a simplex is formed from a sample, and a new trial po
is generated as a reflection of one point in the centroid of
other points in this simplex. If the worst point in the initiall
generated set is worse than the new one, it is replaced by
latter. The ideas of CRS algorithms have been further extende
Ali and Storey~1994! producing CRS4 and CRS5. In CRS4, if
JOURNAL OF WATER RESOURCES P
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new best point is found, it is ‘‘rewarded’’ by continuing searc
around it; new points are sampled from the multidimensio
beta-distribution with the peak ‘‘above’’ the found best point.

Optimization Problem Formulation

Two optimization problems are formulated:~1! minimization of
cleanup cost~installation cost and operation plus maintenan
cost of pumping and wells!; and ~2! minimization of cleanup
time. In both cases, the pumping rates and the well locations
decision variables. The upper and lower limits in pumping ra
and the specified area for well locations are considered as
straints. In addition, in the case of cost minimization, the limi
tion in cleanup time is also introduced as a constraint.

Optimization of Cleanup Time
If the aquifer cleanup time is to be minimized the objective fun
tion and the constraints can in general be defined as

minimize t5 f ~q1 ,q2 ,...,qn ,c1 ,r 1 ,c2 ,r 2 ,...,cn ,r n!

subject to qmin<~q1 ,q2 ,...,qn!<qmax (5)
cmin<~c1 ,c2 ,...,cn!<cmax

r min<~r 1 ,r 2 ,...,r n!<r max

where t5cleanup time;q1 ,q2 ,...,qn5pumping rates in wells
1,2,...,n; c1 ,c2 ,...,cn5column number ~on grid! of wells
1,2,...,n; r 1 ,r 2 ,...,r n5row number~on grid! of wells 1,2,...,n;
qmin ,qmax5minimum and maximum ranges in pumping rate
cmin ,cmax5ranges in column number for well locations; an
r min ,rmax5ranges in row number for well locations.

Optimization of Cost
The well installment cost~capital cost! and the operation and
maintenance cost per year~annual cost! can be expressed as
function of total pumping rates as

capital cost5C1(
i 51

n

qi
m . (6)

operation and maintenance cost per year5C2Qr (7)

The constantsC1 andC2 depend on the unit rates~per unit pump-
ing rate! of capital cost and annual cost, respectively. The ex
nentsm and r are generally less than unity, and they account
the rate of change~generally decrease! in per unit capital and
annual costs, respectively, with respect to the increase in t
pumping rate. TheQ is the total pumping rate of all wells, andqi

is the pumping rate of individual wells withn being the number
of wells. Thus, for the optimization of the total cost of well in
stallment and pumping the objective function can be expresse
a function of pumping rates. Expressing the total cost in pres
worth the objective function and the constraints are defined a

minimize C1(
i 51

n

qi
m1C2(

k50

t
Qr

~11D !k

(8)
subject to t<tmax

The constraints in pumping rates and position arrays apply s
larly as in the optimization of cleanup time.

In Eq. ~8!, t is the cleanup time in years, andD is the discount
rate~discounted fromkth year!. The tmax is the maximum limit in
cleanup time. If the resulting cleanup time is greater than
maximum limit, instead of using Eq.~8!, high cost called a pen
LANNING AND MANAGEMENT / NOVEMBER/DECEMBER 2002 / 433
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Fig. 1. Hypothetical aquifer: Plume area and pumping wells with~a! initially fixed well locations;~b! optimized well locations when potentia
well locations are outside the plume area~CRS4 solution!; and ~c! optimized well locations when potential well locations are both inside
outside the plume area~GA solution!
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alty cost is used. In this case, the penalty cost was set greater
the cost obtained when all the pumps are operated to their
capacities for the period oftmax.

The capital cost, Eq.~6! can further be separated into fixe
cost and varying cost. But this fixed cost is more site specific
requires more detailed information about the cost in the area
cerned. For this type of study, however, it is reasonable to exp
the capital cost as a function of pumping rates.

Tools and Techniques

Tools Used

The groundwater simulation codes MODFLOW~McDonald and
Harbaugh 1988! and MODPATH~Pollock 1994! developed by the
U.S. Geological Survey are used for flow and particle-tracki
respectively. The global optimization tool GLOBE~Solomatine
434 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMEN
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1998, 2002! is used for optimization. Brief descriptions abo
these codes are given below.

MODFLOW is a 3D finite-difference groundwater flow mode
It has a modular structure that allows it to be easily modified
adapt the code for a particular application. MODFLOW simula
steady and nonsteady flow in an irregular shaped flow system
which aquifer layers can be confined, unconfined, or a comb
tion of confined and unconfined. Flow from external stress
such as flow to wells, areal recharge, evapotranspiration, flow
drains, and flow through riverbeds can be simulated. Speci
head and specified flux boundaries can be simulated. It is
rently one of the most used numerical models for groundwa
flow problems.

MODPATH is a particle-tracking postprocessing package t
was developed to compute 3D flow paths using output fr
steady-state or transient groundwater flow simulation
MODFLOW. MODPATH uses a semianalytical particle-trackin
Fig. 2. Illustration of nonconvex function of aquifer cleanup time and pumping rates
T / NOVEMBER/DECEMBER 2002
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scheme that allows an analytical expression of the particle’s fl
path to be obtained within each finite-difference grid cell. Parti
paths, their velocities and the travel time are computed by tra
ing particles from one cell to the next until the particle reache
boundary, an internal sink/source, or satisfies some other term
tion criterion.

GLOBE is a PC-based tool built to apply GO techniques ori
nally to the problems of model calibration. GLOBE can be co
figured to use an external program as a supplier of the objec
function values. Currently, GLOBE has nine GO algorithm
which include: two versions of controlled random search~CRS2
and CRS4!, two multistart algorithms~Multis and M-Simplex!,
adaptive cluster covering~ACCO!, adaptive cluster covering with
local searches~ACCOL!, adaptive cluster covering with desce
~ACD!, adaptive cluster covering with descent and local searc
~ACDL!, and a version of GA, which performed best as discus
earlier.

Coupling of MODFLOW and MODPATH with GLOBE

Using the GLOBE as an optimizer requires coupling it with t
simulation model~in this case MODFLOW and MODPATH! so
that they execute as a single application without the necessit
interactive input during computation. To do this, two sets of e
ecutable programs are needed. The first program converts
GLOBE output file~searched values of parameters! as an input
file to MODFLOW, whereas the second program takes the ou
from MODPATH and computes the objective function value
feed to GLOBE. The coupled model starts from the GLOBE a
runs in a loop until the selected algorithms generate an accep
solution and a stopping criterion is met.

Application Examples

The method is illustrated by applying it to two contaminated aq
fer systems—one hypothetical and one real. The hypothetical
is used only for testing the proposed technique. Therefore,
formulated as a very simple aquifer that can be remediated
relatively short period. The description of the aquifer and
results obtained in each are discussed separately.

Hypothetical Aquifer System

General Description
A hypothetical unconfined aquifer system is formulated. The s
of this aquifer is 1,50031,500 m with an average depth of 34
m. In plan, the square uniform grid size of 20320 m is used. Two
types of boundary conditions—impervious~or zero flux! at two
sides and constant head boundaries at the other two sides
JOURNAL OF WATER RESOURCES P
-

f

e

t

le

e

re

specified. The hydraulic conductivity varies from 2 to 30 m/da
The effective porosity of the soil is taken as 0.2, and recharg
0.0005 m/day is specified throughout the area. A contamin
plume area is defined in the middle of the aquifer, which cov
28 grids in plan. A portion of the aquifer showing the plume ar
and pumping wells is shown in Fig. 1~a!. The plume boundary is
defined by placing particles on all external faces. In total, th
are 846 particles with 9 particles on each such face.

Illustration of the Relationship Between Pumping Rates and
Cleanup Time
To illustrate graphically the relationship between pumping ra
and plume removal time, a plot of cleanup time against two va
ing pumping rates is shown in Fig. 2. The pumping was done
four pumping wells positioned in a line, A, C, D, and B, respe
tively. A constant pumping rate of 1,000 m3/day is applied in the
two inner pumping wells C and D, whereas the pumping rate
the two outer wells~A and B! are varied in the interval of 50
m3/day. The range of pumping rates in these wells is between
1,500 m3/day. Furthermore, the cleanup time is also computed
illustrate the variation in cleanup time by varying the pumpi
rate in only well B ~Fig. 3!. In this case, the constant pumpin
rate of 1,000 m3/day is used in all other three wells. Figs. 2 and
clearly indicate the nonlinear and nonconvex nature of
cleanup time response function when more than one pump
well is used. Similar results have been shown by Greenwald
Gorelick ~1989!.

Optimization and Results
Optimization is carried out to minimize:~1! cleanup time and~2!
cleanup cost with pumping rates and well locations as decis
variables. In both cases, four wells are used for pumping
aquifer with initially assumed positions across the regional fl

Fig. 3. Illustration of cleanup time variation with pumping rate
Table 1. Hypothetical Aquifer: Cleanup Time Optimization—Pumping Rates as Decision Variable

GO
algorithms

Number of
model runs

Cleanup
time ~days!

Pumping Rates~m3/day!

Well-1 Well-2 Well-3 Well-4 Total

Without
optimization

1,039 1,500 1,500 1,500 1,500 6,000

GA 509 192 1,210 1,070 1,100 740 4,120
ACCO 353 191 1,480 1,000 950 1,190 4,620
CRS4 658 188 1,170 1,120 1,070 760 4,120
Multis 1,583 207 390 1,290 930 970 3,580
LANNING AND MANAGEMENT / NOVEMBER/DECEMBER 2002 / 435



Table 2. Hypothetical Aquifer: Cleanup Time Optimization—Pumping Rates and Well Locations as Decision Variables

GO
algorithms

Number of
model
runs

Cleanup
time

~days!

Pumping Rates~m3/day! and
Well Locations~row, column!

Well-1 Well-2 Well-3 Well-4 Total

Wells outside
the plume
GA 948 153 1,310

~35, 34!
730

~38, 34!
970

~40, 34!
580

~43, 34!
3,590

ACCO 630 153 1,310
~35, 34!

970
~38, 34!

1,020
~41, 34!

150
~42, 34!

3,450

CRS4 1,400 151 1,160
~36, 34!

730
~38, 34!

390
~39, 34!

630
~40, 34!

2,910

Wells inside
& outside the
plume
GA 1,352 45 1,000

~36, 37!
740

~37, 37!
710

~39, 37!
520

~39, 38!
2,970

ACCO 759 54 1,000
~34, 35!

900
~37, 37!

860
~39, 37!

480
~40, 35!

3,240

CRS4 982 51 550
~37, 38!

1,020
~38, 37!

260
~39, 36!

760
~40, 37!

2,590

Note: The values in parentheses are row and column numbers of the well position.
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direction as shown in Fig. 1~a!. For each well, the range of pump
ing rates are defined from 0.0~no pumping! to 1,500 m3/day. The
results are discussed below.

Cleanup time is calculated without using the optimizati
technique keeping the maximum pumping rate~1,500 m3/day! in
all wells with the initially assumed locations. The cleanup tim
for this case is found to be 1,080 days. Then, the GO techniqu
applied by varying only the pumping rates while maintaining t
initial fixed well locations. Four algorithms~GA, ACCO, CRS4,
and Multis! are used. The best optimal solutions~aquifer cleanup
time! given by all four algorithms are approximately 200 da
with the total pumping rates~sum of pumping rates of four wells!
between 3,580 and 4,620 m3/day ~Table 1!. Interestingly, all op-
timal solutions and corresponding total pumping rates are s
stantially lower than the cleanup time of 1,080 days result
from the total pumping rate of 6,000 m3/day. In this case, CRS4
gives the best result~188 days! requiring 658 model runs and
ACCO uses the fewest model runs~353!, resulting in 191 days of
cleanup.

Optimization is also carried out varying both the pumpi
rates and well locations. Two cases are used, one with pote
well locations outside the plume area and one with potential
cations both inside and outside the plume area. The results cl
show that well locations are equally important for the optimiz
design of aquifer cleanup system and that the cleanup time ca
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reduced considerably by selecting appropriate well positi
~Table 2!. Huang and Mayer~1997! explicitly used well locations
as decision variables and showed that it is important. The resu
this study coincides with their conclusion. The results obtain
from three algorithms~GA, ACCO, and CRS4! are shown in
Table 2, and the well locations for the best solutions are prese
in Figs. 1~b! and 1~c!. The algorithm Multis is dropped from this
and further experiments, as it could not terminate the optimiza
process.

The aquifer system is then optimized with respect to the to
cost of cleanup, Eq.~8!. In this case, only the pumping rates a
taken as decision variables. The coefficientsC1 and C2 are as-
sumed to be 300 and 730 respectively. The coefficientm is taken
as 0.75 whereas ther is taken equal to 1. The annual discount ra
D is taken as 8.0%. The resulting cost will have arbitrary mo
etary unit ~MU!. In addition to the limit in maximum pumping
rate of 1,500 m3/day, the maximum limit in cleanup time of 5
years is introduced as a constraint.

Among the three algorithms used, CRS4 provides the m
cost effective solution with the cleanup cost of 15,437~Table 3!.
This solution removes the plume in 1,482 days~4.06 years!. The
best solution given by the same algorithm when optimizing
cleanup time~Table 1! requires 24,913, but removes the plume
188 days only.
Table 3. Hypothetical Aquifer: Cleanup Cost Optimization—Pumping Rates as Decision Variables

GO
algorithms

Cleanup
time

~days!

Pumping Rates~m3/day! Cleanup Cost~MU!

Well-1 Well-2 Well-3 Well-4 Optimization
in cost

Optimization
in timea

GA 462 55 83 1,350 0 17,368 25,261
ACCO 455 28 1,461 55 28 18,079 27,985
CRS4 1,482 28 28 413 28 15,437 24,913
aThis cost is calculated for the cleanup time and pumping rates from Table 1.
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Real Aquifer System

General Description
A contaminated aquifer in Europe is considered. This aquife
contaminated due to the waste disposal from industries, ma
the chemical works. Two dumping sites, one for solid waste
about 300 by 60 m in size and the other for distillation liqu
residues of about 60 m in diameter, are responsible for the
tamination of the aquifer. The site was used for waste disp
without any protection against leachate for 15 years. Due to
lack of information on the exact plume dimensions, the entire a
underneath these dumping sites is considered as the plume
area of interest comprises quaternary fluvial sediments of
river. The sediments consist of clayey loam with a varying c
tent of sand, sandy clay, and locally clayey fine-grained sa
Their thickness varies between 2.5 and 8.0 m. The groundw
flow is affected by the seepage from the old Elbe River and dr
age caused by a canal.

Fig. 4. Real aquifer: Plume area, boundary conditions and rive
canals positions
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Assumptions, Hydraulic Parameters, Boundary Conditions
and the Plume Boundary
A single-layered unconfined heterogeneous isotropic aquife
assumed. The total area of 1,040 by 880 m is considered
simulation with square uniform grid of 20320 m. The boundary
condition along the north and east~Fig. 4! is defined as the con
stant head boundary. On the West Side, a zero-flux bounda
used except for the three cells next to the canal where a con
head boundary is specified. On the southern side, zero-
boundary and constant head boundary are defined. All rivers
canals are incorporated for the simulation specifying appropr
fluxes.

An extreme variation in the hydraulic conductivity is observ
with the minimum of 0.75 m/day to the maximum of 75 m/da
In terms of recharge rates, the area is divided into th
sectors. Sector 1 reflects the regional recharge rate
2.07431024 m/day. Sector 2 is the plume area with the recha
rate of 1.03731024 m/day ~half of the regional value!, whereas
Sector 3 covers the landfill area with an impervious liner, and
recharge is considered.

The plume boundary is defined by specifying particles on
external faces of all grid cells containing the plume. Each s
face has 9 particles, and altogether 990 particles envelop
plume. The illustration of the plume area together with the init
locations of the pumping wells is shown in Fig. 5~a!. As seen in
this figure, all potential well locations are considered outside
plume area. The area inside the plume is assumed inaccessib
well construction.

Optimization and Results
In this aquifer area, as given by test wells, the maximum yi
from each well is only 25.92 m3/day. Therefore, to conside
pumping rates as a decision variable has no significance. It is
this reason that the optimized solution is computed conside
only the well locations as a decision variable. Nine pumping we
with the initial positions shown in Fig. 5~a! are assumed, and th
constant pumping rate of 25.92 m3/day is assigned to each wel
In this case, optimization in cleanup time is carried out using t
algorithms, GA and ACCO. For the initially located well pos
Fig. 5. Real aquifer: Plume area, potential well locations and pumping wells with~a! initially fixed well locations, and~b! optimized well
locations~GA solution!
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tions, the resulting cleanup time is 35 years. The optimal so
tions given by GA and ACCO are 13 and 14.8 years, respectiv
The result is shown in Table 4. In this example, GA gives the b
solution but ACCO performs faster. The optimized well locatio
found by GA are shown in Fig. 5~b!.

In particle-tracking methods, some particles may enter c
with very low or no outflow or travel through very long paths a
thereby take a very long time to be removed. Because of th
particles, the cleanup strategy may be unreasonably expensiv
practice, however, it is almost impossible to remove 100% c
tamination from an aquifer. Therefore, to exclude the effect
such particles in total cleanup time, the computation is repe
considering only 98% particle removal for the well configurati
shown in Fig. 5~a!. Significantly enough, more than 20% redu
tion in cleanup time is achieved by excluding 2% of the particl
The comparison is shown in Table 5. It is to be noted that ther
no established relationship between the percentage of part
removed and the concentration of the contaminants.

It is difficult to say how many particles to exclude, and t
decision should be made based on the designer’s judgment
the particular situation. To better understand the effect of exc
ing some particles, the travel time is computed for different p
centages of particle removal for the same well configuration, F
5~a!. In this example, the cleanup time is reduced to 87% con
ering 99% removal of the particles, and it is reduced to 60.7%
95% particle removal. The result is illustrated in Fig. 6.

Comparison of Algorithms

It would be important for a practitioner to have an idea which G
algorithm to use. Comparison of algorithms is always a diffic
task. It depends not only on the criteria used, but also on
characteristics of the particular case studies used, details of im

Table 4. Real Aquifer: Cleanup Time Optimization—Well Location
as a Decision Variable

Pumping well

Well Location ~row, column!

Initial
~assumed!

Given by
GA

Given by
ACCO

Well-1 ~21, 16! ~21, 13! ~21, 14!
Well-2 ~21, 23! ~21, 14! ~21, 16!
Well-3 ~22, 11! ~21, 16! ~21, 21!
Well-4 ~22, 21! ~22, 21! ~22, 12!
Well-5 ~22, 24! ~22, 21! ~22, 21!
Well-6 ~23, 26! ~23, 26! ~22, 26!
Well-7 ~25, 26! ~24, 26! ~26, 22!
Well-8 ~26, 13! ~26, 25! ~26, 23!
Well-9 ~26, 18! ~26, 26! ~26, 27!
Cleanup time~years! 35 13 14.8
Number of model runs 1,158 860
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mentation, proper tuning of algorithms, etc. The authors did th
best to ensure equal ‘‘starting conditions’’ for all four algorithm
Solomatine~1998, 1999! compared the performance of sever
GO algorithms using three performance indicators:~1! Effective-
ness~how close the algorithm gets to the global minimum, or,
the global minimum is unknown, how low its found estimate i!;
~2! Efficiency ~running time! of an algorithm measured by th
number of function evaluations needed~assuming the running
time of the algorithm itself is negligible compared to the tim
required for the function evaluation!; and ~3! Reliability ~robust-
ness! of the algorithm measured by the number of successe
finding the global minimum, or at least approaching it sufficien
closely. The comparison of computational performance of opti
zation methods carried out by Yoon and Shoemaker~1999! are
also based on similar criteria.

In this study, four algorithms are compared based only
‘‘effectiveness’’ and ‘‘efficiency’’ criteria. Due to the popularity o
GA, special attention was given to the selection of the best p
forming version and its proper tuning~covered above!. The hy-
pothetical aquifer with the well locations shown in Fig. 1~a! was
used as an example. The optimum solutions obtained from dif
ent algorithms are quite close but require noticeably differ
number of model runs. It is necessary to note that in differ
cases or runs the best results are obtained from different a
rithms. In all cases, ACCO was the fastest to reach the solu
with 315 to 759 model runs which is, on an average, less than
thirds the model runs of GA and CRS4. The GA and CRS4
quired 509 to 1,352 and 473 to 1,400 model runs, respectiv
Such differences in model runs~computation time! may become
critical when more complex groundwater models or systems
used. However, CRS4 and GA were more effective, i.e., were a
to find optimum more accurately.

Fig. 7 illustrates a typical run. It must be stated that the co
parison presented here is based only on one run. Proper com

Fig. 6. Illustration of the reduction in plume removal time whe
some particles are excluded
Table 5. Real Aquifer: Comparison of Cleanup Time for 100 and 98% Particle Removal

GO
algorithms

Particles Removal
100%

Particles Removal
98% Reduction in

cleanup time
~%!

Number of
model runs

Cleanup
time ~years!

Number of
model runs

Cleanup
time ~years!

GA 1,158 13.0 744 10.0 23.0
ACCO 860 14.8 989 11.3 23.6
T / NOVEMBER/DECEMBER 2002
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son should involve more algorithms and their variations and
based on averaging on several runs. It should also be stated
ACCO and CRS4 algorithms are optimized for real-valued pr
lems or problems with high discretization. GA, by design, is o
ented at discrete-valued problems, where it shows higher pe
mance.

Conclusions

This study introduces the optimization of pumping and inject
strategy for contaminated groundwater remediation as a prob
of multiple extrema~GO problem! and shows the applicability o
GO techniques in such problems. Such techniques do not req
computation of derivatives as required in more traditional optim
zation methods and can be applied in groundwater mode
problems where commercial off-the-shelf~black-box! software is
used. In these cases, the details of the underlying equation
not known. The comparison of the four global optimization alg
rithms did not reveal a clear winner. ACCO was the fastest,
CRS4 and GA were more accurate. Due to the popularity of G
its code could be easily obtained from the Internet, and if thi
the case, GA would be a good choice. GA could be also the
choice in case of discrete-valued variables. However, if time
lows to apply several GO algorithms, this should be done
would be beneficial for a decision maker to have several s
tions. It is important to note that all of the presented algorith
use randomized search, so the solutions found are normally
ferent in different runs and for different algorithms. Fig. 3 sho
that many points~solutions! have close function values~cleanup
time and consequently cost!. The role of the modeler and decisio
maker would then be to choose an appropriate engineering s
tion from several ‘‘good’’ solutions found by various algorithm
runs.

This study also shows that the cleanup time and, therefore
cleanup cost are very sensitive to both pumping rates and
locations. Satisfactory results are obtained both in the minim
tion of cleanup time and cleanup cost taking pumping rates an
well locations as decision variables.

In particle-tracking method, the estimated cleanup time m
be very high due to some particles which may enter cells w
very low or no outflow or travel through very long paths. Th
study shows that excluding the effect of few such particles
significantly reduce the cleanup time. But the decision of h

Fig. 7. Comparison of the performance of algorithms
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many particles to exclude is solely dependent on the design
judgment and the particular situation.
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