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Abstract This paper investigates the comparative performance of two data-driven 
modelling techniques, namely, artificial neural networks (ANNs) and model trees 
(MTs), in rainfall–runoff transformation. The applicability of these techniques is 
studied by predicting runoff one, three and six hours ahead for a European catchment. 
The result shows that both ANNs and MTs produce excellent results for 1-h ahead 
prediction, acceptable results for 3-h ahead prediction and conditionally acceptable 
result for 6-h ahead prediction. Both techniques have almost similar performance for 
1-h ahead prediction of runoff, but the result of the ANN is slightly better than the MT 
for higher lead times. However, the advantage of the MT is that the result is more 
understandable and allows one to build a family of models of varying complexity and 
accuracy.  
Key words rainfall; runoff; artificial neural networks; M5 model tree; prediction; committee 
machine 

Arbres de modèles comme alternative aux réseaux de neurones en 
modélisation pluie–débit 
Résumé Cet article étudie de manière comparative les performances de deux 
techniques de modélisation pluie débit contraintes par les données, en l’occurrence des 
réseaux de neurones artificiels (RNA) et des arbres de modèles (AM). L’applicabilité 
de ces techniques est étudiée pour la prévision des débits d’un bassin versant européen 
pour des anticipations de une, trois et six heures. Les résultats montrent que les RNA 
et les AM produisent des résultats excellents pour la prévision à une heure, 
acceptables pour la prévision à trois heures et acceptables sous condition pour la 
prévision à six heures. Les deux techniques ont des performances presque similaires 
pour la prévision des débits à une heure, mais les résultats du RNA sont légèrement 
meilleurs que ceux de l’AM pour les délais plus longs. Néanmoins l’AM présente les 
avantages de fournir des résultats plus compréhensibles et de permettre la construction 
d’une famille de modèles de complexité et de précision variables.  
Mots clefs  pluie; écoulement; réseaux de neurones artificiels; arbre de modèles M5; prévision; 
fusion de classifications 

 
 
INTRODUCTION 
 
The prediction of variables such as precipitation, runoff, river stages etc. has always 
been a major problem in hydrology. Hydrological phenomena are extremely complex, 
highly nonlinear and exhibit a high degree of spatial and temporal variability. So, 
hydrological modelling becomes one of the important tasks for planning, operation and 
control of any water resource project. 
 In the area of rainfall–runoff modelling, numerous runoff forecasting techniques 
have been suggested and used in the past. There are basically two approaches for 
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hydrological modelling: the theory-driven (conceptual and physically-based) approach, 
and the data-driven (empirical and black-box) approach often associated by 
practitioners with statistical modelling. Conceptual models represent the general 
internal sub-processes and physical mechanisms of the hydrological cycle, without 
looking at the spatial variability and stochastic properties of the rainfall–runoff 
process. The parameters are generally assumed as lumped representation of the basin 
characteristics. Physically-based models are based on the understanding of the under-
lying physical behaviour of the system (hydrological cycle). Typically, they involve 
the solution of a system of partial differential equations that represent our best under-
standing of the flow processes in the watershed. Data-driven (black-box) models treat 
the hydrological system (such as a watershed) as a black box and try to find a 
relationship between historical inputs (e.g. rainfall, temperature, etc.) and outputs (e.g. 
runoff). Traditionally, the data-driven models borrow the techniques developed in such 
(overlapping) areas as statistics, soft computing, computational intelligence, machine 
learning and data mining.  
 Among many data-driven techniques, the artificial neural network (ANN) is the 
most widely used. The concept of ANNs is inspired by the biological neural networks 
of the human brain. Mathematically, an ANN is a complex nonlinear function with 
many parameters that are adjusted in such a way that the ANN output becomes similar 
to the measured output on a known data set. The discovery of the back-propagation 
algorithm for training an ANN has caused a tremendous growth of interest in this field. 
Within the last decade, one could see a huge advancement due to the development of 
more sophisticated algorithms and the emergence of powerful computational tools. The 
applications of ANNs in hydrology can be found in many papers, such as Minns & 
Hall (1996), Shamseldin (1997), Abrahart & Kneale (1997), Dawson & Wilby (1998), 
Dibike & Solomatine (1999), Sajikumar & Thandaveswara (1999), Zealand et al. 
(1999), Abrahart & See (2000), Coulibaly et al. (2000), Imrie et al. (2000), 
Govindaraju & Rao (2000), Lekkas et al. (2001), Persson & Berndtsson (2001), 
Rajurkar et al. (2002), Shamseldin & O’Connor (2001), and Tayfur (2002). One of the 
disadvantages of ANNs is that for a decision maker it is very difficult to analyse the 
structure of the resulting ANN and to relate it to the outputs.  
 However, there are approaches to numerical prediction that often reach accuracy 
comparable to that of ANNs. They use piece-wise linear approximations that are much 
easier to interpret. One method of Friedman (1991) is used in his MARS (multiple 
adaptive regression splines) algorithm implemented as MARS software. Another, used 
in this paper, is the machine learning method M5 model tree (Quinlan, 1992) 
implemented in the Cubist and Weka software packages (Witten & Frank, 2000). An 
earlier method of Breiman et al. (1984) of regression trees (implemented in the CART 
software) should also be mentioned, but it generates zero-order models (constant 
output values for subsets of input data) rather than first-order (linear) models. 
 However, in hydrology, M5 model trees (MTs) are practically unknown; only one 
related paper in Slovene language (Kompare et al., 1997) was found by the authors. 
Solomatine (2002) demonstrated the use of MTs in hydrological and other problems, 
along with other data-driven models.  
 The purpose of this paper is to report the application and to investigate the 
performance of M5 model trees for rainfall–runoff modelling, and to compare this with 
the performance of ANNs. 
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M5 MODEL TREE 
 
This machine-learning technique uses the following idea: split the parameter space into 
areas (subspaces) and build in each of them a linear regression model. In fact the 
resulting model can be seen as a modular model, or a committee machine, with the 
linear models being specialized on the particular subsets of the input space. This idea is 
not new. Combination of specialized models (“local” models) is used in modelling 
quite often. One can find a clear analogy between MTs and combination of linear 
models used in dynamic hydrology already in the 1970s—a notable paper on 
multilinear models is by Becker & Kundzewicz (1987). However, the M5 model tree 
approach, based on the principle of information theory, makes it possible to split the 
multi-dimensional parameter space and to generate the models automatically according 
to the overall quality criterion; it also allows for varying the number of models. The 
idea of combining several models with the help of computational intelligence 
techniques, possibly combining theory- and data-driven, is finding more and more 
supporters in hydrology (see, for example Xiong et al., 2001, where the outputs of 
hydrological models are combined in a fuzzy system).  
 The splitting in MT follows the idea of a decision tree, but instead of the class 
labels it has linear regression functions at the leaves, which can predict continuous 
numerical attributes. Model trees generalize the concepts of regression trees, which 
have constant values at their leaves (Witten & Frank, 2000). So, they are analogous to 
piece-wise linear functions (and hence nonlinear). Computational requirements for 
model trees grow rapidly with dimensionality. Model trees learn efficiently and can 
tackle tasks with very high dimensionality—up to hundreds of attributes. The major 
advantage of model trees over regression trees is that model trees are much smaller 
than regression trees, the decision strength is clear, and regression functions do not 
normally involve many variables. 
 The algorithm known as the M5 algorithm is used for inducing a model tree 
(Quinlan, 1992), which works as follows (Fig. 1). Suppose that a collection T of 
training examples is available. Each example is characterized by the values of a fixed 
set of (input) attributes and has an associated target (output) value. The aim is to 
construct a model that relates a target value of the training cases to the values of their 
input attributes. The quality of the model will generally be measured by the accuracy 
with which it predicts the target values of the unseen cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 The induction of a model tree as a modular model (committee machine). 
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 Tree-based models are constructed by a divide-and-conquer method. The set T is 
either associated with a leaf, or some test is chosen that splits T into subsets corre-
sponding to the test outcomes and the same process is applied recursively to the 
subsets. The splitting criterion for the M5 model tree algorithm is based on treating the 
standard deviation of the class values that reach a node as a measure of the error at that 
node, and calculating the expected reduction in this error as a result of testing each 
attribute at that node. The formula to compute the standard deviation reduction (SDR) 
is: 

�−=
i

i
i Tsd

T
T

TsdSDR )()(  (1) 

where T represents a set of examples that reaches the node; Ti represents the subset of 
examples that have the ith outcome of the potential set; and sd represents the standard 
deviation.  
 After examining all possible splits, M5 chooses the one that maximizes the 
expected error reduction. Splitting in M5 ceases when the class values of all the 
instances that reach a node vary just slightly, or only a few instances remain. The 
relentless division often produces over-elaborate structures that must be pruned back, 
for instance by replacing a subtree with a leaf. In the final stage, a smoothing process 
is performed to compensate for the sharp discontinuities that will inevitably occur 
between adjacent linear models at the leaves of the pruned tree, particularly for some 
models constructed from a smaller number of training examples. In smoothing, the 
adjacent linear equations are updated in such a way that the predicted outputs for the 
neighbouring input vectors corresponding to the different equations are becoming 
close in value. Details of this process can be found in Quinlan (1992) and are given by 
Witten & Frank (2000).  
 
 
CASE STUDY 
 
Many experiments have been performed by the authors with ANNs, MTs, and other 
machine learning techniques for numerical prediction on various data sets. The choice 
of a case study in hydrology was a bit of a problem since the real-life data often suffer 
from gaps and inaccuracies and could be inappropriate for testing a data-sensitive 
method in different regimes. That is why a three-month data set was selected. The set 
is quite old, but of high quality, high frequency, and it was used previously to compare 
hydrological models (Franchini & Pacciani, 1991). Since the objective was to build a 
predictive model, the time resolution of the data set was important: it was found that 
the reaction time of the catchment was 6 h, that is the much larger available daily data 
sets could not be used.  
 The area for this study is the Sieve River basin, located in the Tuscany region of 
Italy, which has a drainage area of 822 km2. The Sieve is a tributary of the Arno River, 
having a length of 56 km. The basin covers mostly hills and mountainous areas. The 
climate of the basin is temperate and humid.  
 For this basin, three months of hourly discharge (Q), precipitation (R) and 
evapotranspiration (E) data were available (December 1959–February 1960, 2160 data 
points). The data represent various types of hydrological conditions, and flows range  
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Sieve: effective rainfall and discharge data
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Fig. 2 Sieve catchment: rainfall and discharge data. 

 
 
from low to very high (Fig. 2). The supplied data were computed as follows: the 
discharge data were calculated using rating curves and hourly water levels; mean areal 
precipitation was calculated by Thiessen polygon method using 11 rainfall stations; the 
hourly areal evapotranspiration data were calculated using the radiation method.  
 
 
EXPERIMENTS 
 
Input set preparation  
 
In general, the goal of a data-driven model (DDM), for example of a regression model 
or ANN, is to generalize a relationship of the form: 

)( )()( nm XfY =  (2) 

where X(n) is an n-dimensional input vector consisting of variables x1, ... xn, and Y(m) is 
an m-dimensional output vector consisting of resulting variables of interest y1, ... yn. In 
hydrology, the values of xi can be causal variables such as rainfall, temperature, 
previous flows, evaporation etc. and the values of yi can be hydrological responses 
such as runoff. 
 The selection of appropriate model inputs is extremely important in any predic-
tion/forecasting model. However, in many DDM applications not enough attention is 
given to this task. The philosophy that is generally adopted is to include all input 
variables that might possibly have an influence on the model outputs and to let the 
DDM determine which inputs are significant. However, presenting a large number of 
inputs and relying on the DDM to determine the critical model inputs, usually results 
in the inclusion of insignificant model inputs. 
 The choice of input variables is generally based on prior knowledge of causal 
variables in conjunction with inspections of time series plots of potential inputs and 
outputs. On top of this, firm understanding of the hydrological system under considera-
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tion is an important prerequisite for the successful application of a DDM. After 
choosing appropriate input variables, the next step is the determination of appropriate 
lags. Since the flow at any moment is effectively composed of contributions from 
different sub-areas whose time of travel covers a range of values, the dynamics of the 
system can be approximated by a set of variables that are properly discretized and 
lagged with respect to the output to be predicted.  
 
 
Data analysis of the Sieve catchment for preparation of inputs 
 
For data-driven modelling of the Sieve catchment, the causal variable is the rainfall, 
while the hydrological response is the discharge at the outlet. Visualization of the input 
and output shows that the maximum value of peak-to-peak time lags of rainfall and 
runoff is close to 7 h. Additional analysis of lags was performed using the average 
mutual information and cross-correlation analysis of rainfall and runoff. Figure 3 
presents the cross-correlation between the rainfall and runoff and it can be seen that it 
is increasing with the lag, becomes maximum (0.75) at a lag of 6 h and then starts 
decreasing. So, average lag time of rainfall for this catchment is considered to be 6 h. 
 Besides rainfall, the previous flows can also be used as input variables in the 
DDM, since they also have a high correlation with the future flows (see Fig. 3). An 
additional reason to consider the past flow is this: as the rainfall data contain a number 
of zero values, the condition of rainfall and no-rainfall is difficult to identify by DDM 
with only rainfall time series as inputs. In such a case, the previous river flows provide 
an indication as to whether rain has occurred or not. Also, such flows add further 
information in that the longer the interval of zero input, the more the output decreases.  
 From the cross-correlation analysis between the evaporation and discharge it 
results that correlation is very low; this indicates that evaporation has little effect on 
the runoff of the catchment. Therefore, instead of using evaporation and rainfall as  
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separate inputs, effective rainfall (rainfall minus evaporation for rainfall greater than 
evaporation and zero otherwise) will be used as the input in this study. 
 
 
ANN model set up 
 
The meaning of the symbols used is as follows: 

REt-τ Effective rainfall, τ = lag time (0, 1, 2, … h)  
Qt  Discharge at time t 
Qt-k  Discharge at time t –k, k = 1, ..., 6 
 

 Software packages NeuralMachine (2002) and NeuroSolutions (2002) were used 
for the ANN modelling. A multi-layered perceptron (MLP) network trained with the 
back-propagation algorithm was used because of its simplicity and capability to learn 
the rainfall–runoff relationship. A nonlinear activation function, the hyperbolic tangent 
function (bounded between –1 and +1) was used in the hidden layer. The linear 
activation function was used in the output layer because it is unbounded and is able, to 
a certain extent, to extrapolate beyond the range of the training data. The number of 
hidden nodes was determined by trial-and-error optimization (performed automatically 
by software). For training, the back-propagation algorithm was used with momentum 
rule with the stopping after 5000 epochs or when the mean squared error (MSE) 
reached 0.0001. The first 300 points were used for verification (from 1 December 
1959, 07:00 to 13 December 1959, 18:00) and the remaining points for training (from 
13 December 1959, 19:00 to 28 February 1960, 00:00). It can be seen that the verifica-
tion data set includes highly variable data with both low and high flows, which is 
important for the proper model testing.  
 The summary of the trained ANNs is presented in Table 1. 
 
 
Table 1 ANN experiment summary. 

Input variables Output variable Hidden nodes 
REt, REt-1, REt-2, REt-3, REt-4, REt-5, Qt, Qt-1, Qt-2 Qt+1 6 
REt, REt-1, REt-2, REt-3, Qt , Qt-1 Qt+3 5 
REt, Qt  Qt+6 3 
 
 
MT model set up 
 
For the model tree (MT), the same sets of input–output, and training and verification 
data were considered as for the ANN. For MT learning, the Weka software (Witten & 
Frank, 2000) was used. A summary of the generated MTs is presented in Table 2. 
 
 
Table 2 MT experiment summary. 

Input variables Output variable Linear models 
REt, REt-1, REt-2, REt-3, REt-4, REt-5, Qt, Qt-1, Qt-2 Qt+1 3 
REt, REt-1, REt-2, REt-3, Qt, Qt-1 Qt+3 3 
REt, Qt  Qt+6 9 
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RESULTS AND DISCUSSIONS 
 
Table 3 presents the performance statistics, and Fig. 4(a), (b) and (c) shows the 
predicted and observed hydrographs, for both methods from the verification data set.  
 
 
Table 3 Comparison of errors for the verification data set. 

ANN: MT: Prediction 
RMSE 
(m3 s-1) 

NRMSE 
(m3 s-1) 

COE RMSE 
(m3 s-1) 

NRMSE 
(m3 s-1) 

COE 

Qt+1 5.175 0.106 0.9886 3.612 0.074 0.9944 
Qt+3 11.353 0.234 0.9452 12.548 0.258 0.9331 
Qt+6 19.402 0.399 0.8401 21.547 0.443 0.8028 
 
 
Prediction of runoff one hour ahead 
 
The result of the experiment confirms the fact that the ANN is capable of identifying 
the rainfall–runoff relationships for a catchment quite well. The error statistics support 
this statement with high values of the coefficient of efficiency (COE), and low values 
of root mean squared error (RMSE) and normalized root mean squared error (NRMSE) 
for verification data, which implies a good model fit. The visualization (Fig. 4(a)) 
shows that both the low flows and the high flows are reproduced well by the model.  
 The result of MT modelling for the same set of inputs indicates that the prediction 
of Qt+1 using the MT is performed quite well for the high flows as well as the low 
flows. The modelling error for verification shows low RMSE and NRMSE and high 
values of COE, indicating a good model performance. 
 There were several models built, but even the simplest model with only three 
equations appeared to be very accurate: 

Qt ≤ 59.4 :  
|   Qt ≤ 32.5 : LM1 (1011/1.64%) 
|   Qt > 32.5 : LM2 (396/6.15%) 
Qt > 59.4 : LM3 (447/23.5%) 

The following are the generated linear models: 

LM1:  Qt+1 = 0.0374 + 0.0181REt + 0.0535REt-1 + 0.00873REt-2  
  + 0.0384REt-3 + 1.01Qt – 0.0127Qt-1 + 0.00311Qt-2 
LM2:  Qt+1 = –0.456 + 0.0287REt + 1.73REt-1 + 0.0407REt-2  
  + 7.38REt-3 + 1Qt – 0.0127Qt-1 +0.00311Qt-2 
LM3:  Qt+1 = 2.97 + 2.47REt + 4.98REt-1 – 0.0389REt-2 + 1.75Qt  
  – 1.08Qt-1 + 0.265Qt-2 

The performance of both of the techniques for 1-h ahead prediction of runoff is 
excellent, and comparatively the MT result is slightly better in terms of goodness of fit. 
It may be noted that the MT model is transparent, i.e. any resulting runoff value can be 
easily checked. The MT model automatically finds the regimes in the system, which in 
this case can be interpreted as low (<32.5 m3 s-1), medium (<59.4 m3 s-1) and high 
flows. Each of the regimes is described by a separate linear model. 
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Fig. 4 Prediction of (a) Qt+1; (b) Qt+6; and (c) Qt+3 using ANNs and MTs. 

 
 
Prediction of runoff three hours ahead 
 
In the second experiment of runoff modelling, an ANN was applied to the prediction of 
the runoff of the Sieve River 3 h ahead (Qt+3). The visualization (Fig. 4(b)) shows that 
the low-flow values are estimated well, while the ANN model encounters some 
difficulties in predicting peak flows. It seems that the runoff values computed by the 
ANN for medium peaks are more affected by the value of REt. As REt increases, Qt+3 
also increases and vice versa. That may be the reason for the oscillations in the 
medium peaks. For the highest peak, both rising and falling limbs of the hydrograph 
are captured well, but the peak magnitude is slightly underestimated.  
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 The MT result (Fig. 4(b)) makes it clear that the result is good for low flows, but 
the peak values are not predicted well. As in the case of the ANN, there are oscillations 
in the prediction of medium peaks and the highest peak is underestimated. 
 The following is the generated model tree with the pruning factor 4: 

Qt ≤ 51.2 :  
|   Qt ≤ 28.7 : LM1 (903/5.66%) 
|   Qt > 28.7 : LM2 (379/13.1%) 
Qt > 51.2 : LM3 (572/66.7%) 

The following are the generated linear models: 
LM1:  Qt+3 = –0.0118 + 0.317REt + 0.124REt-1 + 0.0844REt-2  
  –0.109REt-3 + 1.09Qt – 0.0826Qt-1 
LM2:  Qt+3 = –0.262 + 11.9REt + 0.182REt-1 + 8.9REt-2  
  – 0.198REt-3 + 3.66Qt – 2.67Qt-1 
LM3:  Qt+3 = 15.5 + 25.7REt + 7.59REt-1 – 0.0923REt-3  
  + 1.44Qt – 0.732Qt-1 

 Comparatively, the result of the ANN is slightly better than the MT (RMSE is 
9.5% lower) with less oscillations in the medium peaks. However, the highest peak is 
underestimated by both of the methods. 
 
 
Prediction of runoff six hours ahead 
 
As the average lag time of the catchment was found to be 6 h, in the last experiment 
the runoff was predicted with a lead time of maximum 6 h. Naturally, as the prediction 
horizon increases, the prediction becomes less accurate. This was also the case in this 
ANN experiment. The result is poor for high flows with much more noise in the peaks 
(Fig. 4(c)), the RMSE and MAE produced by the model for verification is higher with 
COE in the range of 0.8, and the low flow values are also overestimated. Therefore, the 
prediction of runoff 6 h ahead is not very good. 
 The prediction of Qt+6 of the MT gives similar result; it is seen from the plot that 
there are large errors in the high flows (Fig. 4(c)). The modelling error for verification 
is also high. So, the result for a 6-h ahead prediction of runoff can be considered as 
acceptable only conditionally.  
 The following is the generated model tree. It is larger than the previous ones 
because an attempt to prune it to a smaller size led to the deterioration of accuracy.  

Qt ≤ 37 :  
|   REt ≤ 0.0614 : LM1 (879/3.51%) 
|   REt > 0.0614 :  
|    |   REt ≤ 0.384 :  
|    |    |   Qt ≤ 22.8 : LM2 (82/7.08%) 
|    |    |   Qt > 22.8 : LM3 (50/14.5%) 
|    |   REt > 0.384 : LM4 (89/60.5%) 
Qt > 37 :  
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|   REt ≤ 0.382 :  
|    |   Qt ≤ 70.2 : LM5 (356/24.4%) 
|    |   Qt > 70.2  
|    |    |   Qt ≤ 103 : LM6 (145/33.9%) 
|    |    |   Qt > 103 : LM7 (80/29.1%) 
|   REt > 0.382 :  
|    |   REt ≤ 2.04 : LM8 (135/160%) 
|    |   REt > 2.04 : LM9 (38/362%) 

The following are the generated linear models: 

LM1: Qt+6 = 0.622 + 1.02REt + 0.947Qt 
LM2: Qt+6 = 3 + 4.08REt + 0.842Qt 
LM3: Qt+6 = 17.8 + 4.08REt + 0.398Qt 
LM4: Qt+6 = –32.3 + 23.5REt + 2.23Qt 
LM5: Qt+6 = 5.15 + 43.6REt + 0.829Qt 
LM6: Qt+6 = 42.9 + 34.5REt + 0.314Qt 
LM7: Qt+6 = 45.7 + 34.2REt + 0.38Qt 
LM8: Qt+6 = 33.8 + 64.3REt + 0.353Qt 
LM9: Qt+6 = 91.8 + 39.5REt + 0.535Qt 

 Although the performance of both of the techniques for the prediction of Qt+6 is 
quite poor, the ANN has slightly lower error than the MT. 
 
 
CONCLUSIONS 
 
For the runoff modelling experiments of the Sieve catchment using ANNs and MTs, it 
was found that both techniques performed very well for runoff prediction with short 
lead times (1 and 3 h), while both failed to produce good results for runoff prediction 
with higher lead times (6 h). The prediction of runoff 1 h ahead is satisfactory because 
the input space contains the most recent information as well as appropriately lagged 
information. For instance, the lagged rainfall values provide the model with informa-
tion about when the rain started, and the recent runoff values tell the model where the 
hydrograph starts rising, reaches the peak and starts falling. It is noteworthy for runoff 
prediction with a lead time of 6 h that peaks are predicted poorly with either 
overestimation or underestimation of the observed hydrographs.  
 In this study, the higher errors for the higher prediction lead times may be due to 
the following factors: 
– Inadequacy in the information carrying capacity of the available data: the data set 

contains many values at the low flow part which are reproduced well by the model, 
whereas it contains less information for high flow parts, which may be insufficient 
to learn the flood hydrograph part. 

– Inability of the model to identify saturation excess runoff and infiltration excess 
runoff: for example, in the prediction of Qt+6, it was seen that the medium peaks 
are overestimated with noisy oscillations. This is due to the fact that the runoff 
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generated by the model is increased immediately when REt is increased and vice 
versa. In reality, it should be saturation excess runoff, and the increase in Q should 
start after 6 h as a lagged effect of rainfall. 

– Lack of recent information in model structure: for the prediction of Qt+3 and Qt+6, 
the latest information is the information at time t. Although there are lagged 
rainfall values up to 6 h, there are no recent values of runoff to provide the infor-
mation about the proper rising and falling time of the hydrograph, as in the case of 
Qt+1 prediction. That is why the model cannot appropriately learn the relationship 
in high flow parts. 

 Looking at the relative performance of the two techniques (ANNs and MTs) for 
runoff modelling of the Sieve catchment, the following was found: 
– For 1-h ahead prediction of runoff, the performance of both techniques was almost 

the same. In this particular experiment, the MT was slightly more accurate. It 
shows that MTs are also able to learn rainfall–runoff relationships like ANNs 
when the dataset contains all possible information. 

– For a 3- and 6-h ahead prediction of runoff, the results of the ANN were slightly 
better than those of the MT in terms of both performance measures and fitness of 
predicted hydrograph. This discrepancy may be due to the splitting criteria of the 
input space to build linear models at the leaves. Model trees do not use all 
available attributes to make linear models at any leaf. Only those attributes which 
fulfil the conditions of certain criteria (standard deviation reduction in this case) go 
under one sub-tree, terminating to a leaf. It is likely that the influencing attribute in 
reality may not be there which may be the reason for poorer performance. On the 
other hand, learning in ANNs is different from MTs, i.e. the iterative learning 
process allows for ultimate model refining. 

 In conclusion, it is important to stress that the ANN is not the only data-driven 
model that can be used in hydrology or elsewhere. Attention to ANNs is without any 
doubt justifiable, but other models deserve attention as well. (The situation can be 
compared to a genetic algorithm that is widely and successfully used but is not the 
most efficient multi-extremum optimization technique.) One feature of ANNs that is 
often criticized by some hydrologists is that they do not reveal anything about the 
structure of the function that they represent. It is believed that the physics is locked up 
in the ANN model in the connection weights and threshold values, but these are not 
easily interpretable.  
 An MT approach can partly resolve this problem. The model setting is very easy, 
the training is very fast, and the generated result (simple linear equations) is under-
standable. The equations are not really physically interpretable but they allow for a 
quick check of the calculation of the predicted flow. The rules and equations can be 
easily implemented in a spreadsheet and they use the language of statistics that could 
be more appealing to some hydrologists than neural networks or soft computing. 
Another feature of MTs is that they generate “local” models that are, in principle, more 
accurate since they correspond to different flow regimes. An MT approach allows one 
to generate a family of models with different complexity and accuracy.  
 The next step, which is currently being undertaken, is to try to build a modular 
model (mixture of models, or committee machines) by using the M5 algorithm for 
splitting the space but using nonlinear local models, for example ANNs, in the leaves 
of a resulting model tree.  
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