This report aims to improve our understanding of how many children are out of school and who they are. It presents a new methodology for counting the number of children who are out of school and explores the link between participation and the characteristics of children and the households in which they live. Data from across a large number of less developed countries reflect disadvantage in terms of participation in primary schooling by gender, location of residence and household wealth.

The report also shows that efforts to widen access to primary education must recognise the different types of out-of-school children, e.g. those who never enter a school, those who start late and those who leave school early. Different contexts call for different types of policies And the profile of out-of-school children can vary widely across countries. Thus, understanding the proximate determinants of out-of-school status are important to planning policies aimed at reducing the number of children excluded from education.

The United Nations Children's Fund (UNICEF) is an agency that aims to help children living in poverty in developing countries, including the care and stimulation they need in the early years of life, and protection from illness, war and natural disasters.
unicef

UNESCO Institute for Statistics

 P.O. Box 6128, Succursale Centre-VilleMontreal, Quebec H3C $3 . J 7$
Canada
http://www.uis.unesco.org

The UNESCO Institute for Statistics (UIS) is the statistical office of the United Nations Educational, Scientific and Cultural Organization (UNESCO) and is the UN depository for internationally comparable statistics in the fields of education, science and technology, and culture and communication.

CHILDREN OUT OF SCHOOL:
 MEASURING EXCLUSION FROM PRIMARY EDUCATION

Children Out of School

UNESCO

The constitution of the United Nations Educational, Scientific and Cultural Organization (UNESCO) was adopted by 20 countries at the London Conference in November 1945 and entered into effect on 4 November 1946. The Organization currently has 191 Member States and six Associate Members.

The main objective of UNESCO is to contribute to peace and security in the world by promoting collaboration among nations through education, science, culture and communication in order to foster universal respect for justice, the rule of law, and human rights and fundamental freedoms that are affirmed for the peoples of the world, without distinction of race, sex, language or religion, by the Charter of the United Nations.

To fulfill its mandate, UNESCO performs five principal functions: 1) prospective studies on education, science, culture and communication for tomorrow's world; 2) the advancement, transfer and sharing of knowledge through research, training and teaching activities; 3) standard-setting actions for the preparation and adoption of internal instruments and statutory recommendations; 4) expertise through technical co-operation to Member States for their development policies and projects; and 5) the exchange of specialised information.

UNESCO is headquartered in Paris, France.

UNESCO Institute for Statistics

The UNESCO Institute for Statistics (UIS) is the statistical office of UNESCO and is the UN depository for global statistics in the fields of education, science and technology, culture and communication.

UIS was established in 1999. It was created to improve UNESCO's statistical programme and to develop and deliver the timely, accurate and policy-relevant statistics needed in today's increasingly complex and rapidly changing social, political and economic environments.

UIS is based in Montreal, Canada.

United Nations Children's Fund (UNICEF)

As a vital member of the UN system, UNICEF works in more than 150 developing countries and territories, has National Committees in 37 industrialized countries and more than 300 UNICEF Goodwill Ambassadors - all dedicated to improving the lives and well-being of children and advancing the Millennium Development Goals.

Established in 1946, UNICEF is unique among world organizations, and unique among those working with the young. Through a wide and diverse network of partners, UNICEF strives to protect and promote the rights of children through its policies, programmes and advocacy. Its yearly report on The State of the World's Children has presented the world's most comprehensive database on children for the past quarter of a century.

Amongst its many initiatives, UNICEF is the lead agency and secretariat for the United Nations Girls' Education Initiative, launched by the UN Secretary General in April 2000 at the World Education Forum in Dakar. With 13 core partners, UNGEI is the flagship of Education for All, emphasizing girls' education in the international effort to ensure the Millennium Development Goal of universal primary education by 2015.

UNICEF is based in New York, United States of America.
http://www.unicef.org
Published in 2005 by

UNESCO Institute for Statistics

P.O. Box 6128, Succursale Centre-Ville

Montreal, Quebec H3C 3J7
Canada
Tel: (1514) 343-6880
Fax: (1514) 343-6882
Email: publications@uis.unesco.org
http://www.uis.unesco.org
ISBN 92-9189-026-X
© UNESCO-UIS 2005
Design: JCNicholls Design - www.jcnicholls.com
Printed by: Imprimerie L'Empreinte
Ref: UIS/AP/05-03

Foreword

The Education for All Campaign and the Millennium Development Goals have focused the world's attention on ensuring that no child is excluded from receiving a primary education. However, despite global efforts to promote universal primary education, there were still 115 million children of primary school age out of school in 2001/02. Globally, 61.6 million girls of primary school age were not in school, accounting for 53% of the total number. The greatest absolute numbers of out-of-school children were found in subSaharan Africa (45 million) and South Asia (42 million).

This report seeks to assess better the magnitude of the problem and monitor progress towards the 2015 education targets. The need to produce a single, authoritative figure on out-of-school children was an important starting point for this joint UNESCO Institute for Statistics (UIS) and UNICEF effort. The new estimates presented in this report address deficiencies in both the methods and data used previously. But, it also seeks to go much further. By recognising the need to critically review existing data at the national level and to confront or integrate data from different sources for more robust results, it is hoped that this report will act as a catalyst for a productive dialogue to improve the quality of national and international education measures.

Indeed efforts are needed in order to improve the way that children out of school are counted, but they are also needed to provide a more detailed picture of these children. The global count is important for monitoring progress. Yet at the same time, it is essential to view the child and household as units of analysis in order to reassess or formulate new national policies which will lead to change at the community level. This perspective requires a range of data and indicators.

While this report pays great attention to numbers of out-of-school children, it is clearly not enough to simply enrol children into school but to ensure that they complete primary schooling equipped with a comprehensive set of basic literacy and numeracy skills. Thus, measures of out-of-school children need to be studied alongside measures of education quality and learning outcomes.

It is essential to better understand the reason why children are not in school in the first place. In many countries, even those with high out-of-school rates, many of these children have had some contact with schooling. For example, in Malawi 91% of children have been in school at some time, but only 31% reach grade 5 . The report estimates that globally, one out of three children who are currently out of school will or have already received some primary education. In other words, the education system often connects with the child but not at the intended age or for the intended duration.

It is therefore imperative to focus policy attention on the key education transition points (entry, progression and completion) within the context of stages of child development. In particular, the report highlights the problem of children who start school late for their age. This not only causes learning difficulties for pupils but also organisational difficulties for teachers in the classroom. In the end, it appears that overage pupils, especially girls, are more likely to leave primary school before completion.

Cream Wright Chief of Education, UNICEF

The report also illustrates the potential of household survey data for providing greater insights about the out-of-school population and the demand for education. There are great gulfs between the relatively well-off and the poor, between those living in urban and rural areas, and between girls and boys. Together the interaction of gender, rural under-development and poverty combine to keep some children out of school. The report also raises important questions about what keeps girls out of school - when is it gender and when is it poverty?

The joint estimates presented here serve as a new baseline number for out-of-school children. For the future, we must build on this baseline to measure trends over time. Further work is needed to present annual updates of the estimates, or even retrospective results, and to construct a methodology to project change on the basis of survey data. The UNESCO Institute for Statistics and UNICEF remain committed to moving this measurement process ahead in order to better inform progress towards the goal of education for all.

Michael Millward
Director a.i., UNESCO Institute for Statistics

Acknowledgements

This report is based on data provided to the UNESCO Institute for Statistics (UIS) by UNESCO Member States. We would like to express our gratitude to all those statisticians who, in each country and territory, made the effort to complete the UIS, UOE or WEI questionnaires. In addition, national teams, partners and the agencies that have produced survey data, ORC Macro, funded primarily by the U.S. Agency for International Development (Demographic and Health Surveys), and UNICEF (Multiple Indicator Cluster Surveys, MICS) are recognised for their important contributions.

Chapter 1 was prepared by Michael Bruneforth (UIS) and Chapter 2 by Edilberto Loaiza and Friedrich Huebler (UNICEF). The report was reviewed extensively by both UNESCO and UNICEF teams.

Foster Kholowa and Sharmila Pillai provided valuable background research. Other important input and contributions were provided by Aurélie Acoca, Jane Foy, Alison Kennedy, Anuja Singh, Mamadou Thiam and other members of staff at the UNESCO Institute for Statistics and Cream Wright, Carol Watson and Trevor Croft at UNICEF.

Reviews of the methodology were carried out by Gordon Brackstone and Tim Holt, and valuable comments were provided by Nicole Bella and Denise Lievesley. Katja Frostell coordinated the production of the report.

Table of contents

Foreword 3
Acknowledgements 5
Table of contents 7
List of figures, tables and text boxes 8
Chapter 1 How many primary school-age children are excluded from education? 11
1.1 Introduction 11
1.2 A new approach to estimate the number of out-of-school children 12
1.3 The global and regional estimates of primary school-age children who are out of school 17
1.4 A framework for classifying out-of-school children 26
Chapter 2 Assessing the characteristics of out-of-school children 33
2.1 Introduction 33
2.2 Demographic and socio-economic determinants 35
2.3 Profiles of children in and out of school 50
Postscript Next steps and a measurement agenda 58
References 59
Annex 1 The methodology for global and regional estimates 60
A. Methodology for the calculation of primary school-age children out of school 60
B. Methodology for the combination of administrative and household survey data 63
C. Administrative and household survey data: Why are they different? 66
D. Methodology to estimate the proportion of late entrants and dropouts 67
Annex 2 Statistical tables 69
Annex 3 Country groupings 116

List of figures, tables and text boxes

Figures
Figure 1.1. Distribution of population and countries by starting age and duration of primary education, 2001/02 15
Figure 1.2. Number of primary school-age children out of school by sex and region, 2001/02 17
Figure 1.3. Distribution of out-of-school children of primary school age by region, 2001/02 17
Figure 1.4. Primary school-age children out of school by region, 2001/02 18
Figure 1.5. Distribution of primary school-age children out of school by sex and region, 2001/02 19
Figure 1.6. Gender disparity among primary school-age children out of school by country, 2001/02 20
Figure 1.7. Primary school-age children out of school by country, 2001/02 22
Figure 1.8. Out-of-school children of primary school age in countries with rates above 5\%, 2001/02 23
Figure 1.9. Out-of-school children by age and school exposure in Zambia, 2001/02 26
Figure 1.10. Out-of-school children by age and school exposure in selected countries 27
Figure 1.11. Children leaving school without completing primary education by age range 28
Figure 1.12. A typology of out-of-school children with respect to exposure to education by region, 2001/02 29
Figure 1.13. Children of official school-entry age not in school by expected participation and region, 2001/02 30
Figure 1.14. Percentage of a single-year age cohort expected to never attend school, 2001/02 31
Figure 1.15. Percentage of a single-year age cohort expected to enter school delayed, 2001/02 32
Figure 2.1. Primary school-age children out of school by region based on household survey data, 1996-2003 35
Figure 2.2. Primary school-age children out of school by background characteristics, 1996-2003 35
Figure 2.3. Primary school-age children out of school by sex and region, 1996-2003 37
Figure 2.4. Distribution of primary school-age out-of-school children by sex and region, 1996-2003 37
Figure 2.5. School attendance by sex and age in India, 2000 38
Figure 2.6. Overage and underage children by sex and age in India, 2000 38
Figure 2.7. Primary school-age children out of school by place of residence and region, 1996-2003 39
Figure 2.8. Distribution of primary school-age children out of school by place of residence and region, 1996-2003 40
Figure 2.9. School attendance by place of residence in Indonesia, 2002/03 41
Figure 2.10. Overage and underage children and youth by place of residence in Indonesia, 2002/03 41
Figure 2.11. Primary school-age children out of school by household wealth and region, 1996-2003 42
Figure 2.12. Distribution of children out of school by household wealth and region, 1996-2003 43
Figure 2.13. School attendance by household wealth in Mali, 2001 44
Figure 2.14. Overage and underage children by household wealth in Mali, 2001 44
Figure 2.15. Primary school-age children out of school by mother's education and region, 1996-2003 46
Figure 2.16. Distribution of out-of-school children by mother's education and region, 1996-2003 46
Figure 2.17. Overage and underage children and youth by sex in Nigeria, 2003 47
Figure 2.18. School attendance by mother's education in Nigeria, 2003 48
Figure 2.19. Overage and underage children by mother's education in Nigeria, 2003 48
Figure A.1. Children in school: Administrative data compared to household survey data, primary school ages 66
Figure A.2. Children in school: Administrative data compared to household survey data, 5 to 17 -year-olds 66
Figure A.3. Percentage of primary school-age pupils aged 5 to 17 years: Household survey and administrative data 67
Figure A.4. Estimates of the proportion of out-of-school populations by type 68
Tables
Table 1.1. Primary school-age children out of school by region, 2001/02 18
Table 2.1. School attendance by sex and age in India, 2000 39
Table 2.2. School attendance by age and place of residence in Indonesia, 2002/03 42
Table 2.3. School attendance by age and household wealth in Mali, 2001 45
Table 2.4. School attendance by age and mother's education level in Nigeria, 2003 49
Table 2.5. Net effects on the likelihood of school attendance 49
Statistical Tables (Annex 2)
Table A1. Primary school-age children in and out of school. Administrative and household survey data 70
Table A2. Children in and out of school by age 80
Table A3. Net attendance rate and share of children out of school by background characteristics 86
Table A4. Distribution of primary school-age population and out-of-school children by background characteristics 90
Table A5. Net effects of children's background characteristics on primary school participation 96
Table A6. Patterns of school attendance in India, 2000 100
Table A7. Patterns of school attendance in Indonesia, 2002/03 101
Table A8. Patterns of school attendance in Mali, 2001 102
Table A9. Patterns of school attendance in Nigeria, 2003 103
Table A10. Child profiles by schooling status in India, 2000 104
Table A11. Child profiles by schooling status in Indonesia, 2002/03 107
Table A12. Child profiles by schooling status in Mali, 2001 108
Table A13. Child profiles by schooling status in Nigeria, 2003 110
Table A14. Likelihood to attend school among children aged 6 to 10 years in India and Indonesia 112
Table A15. Likelihood to attend school among children aged 6 to 10 years in Mali and Nigeria 113
Table A16. Sampling errors and confidence intervals for household survey data 114
Text Boxes
Box 1.1. Estimates of out-of-school children 13
Box 1.2. Defining primary education 16
Box 1.3. At which age do children drop out from school? 28
Box 2.1. Case study - Sex, age and exclusion in India 38
Box 2.2. Case study - Place of residence, age and exclusion in Indonesia 41
Box 2.3. Case study - Poverty, age and exclusion in Mali 44
Box 2.4. Case study - Mother's education, age and exclusion in Nigeria 47
Box 2.5. Regression analysis of school attendance 50

How many primary school-age children are excluded from education?

1.1 Introduction

Education brings wide-ranging benefits to both individuals and societies. It is considered so important to individual development that the right to primary education is legally guaranteed in most countries of the world. Moreover, international human rights conventions also recognise the right to education. This right has been established by a succession of UN Conventions, from the Universal Declaration of Human Rights (1948) to the Convention on the Rights of the Child (1989), which acquired the status of international law in 1990. According to Article 28 of the Convention, governments have the responsibility of making primary education compulsory and available free to all.

Education is also recognised as crucial to human development. Indeed the Education for All (EFA) movement and the Millennium Development Goals (MDG) have led to greater attention paid to educational participation and completion. Universal primary education is Goal 2 of both EFA (Jomtien, 1990; reaffirmed in Dakar, 2000) and the MDGs, adopted by UN Member States in 2000 (UNESCO, 2000; UN, 2003).

In the context of international goals and commitments, the number of out-of-school children is one of the most frequently cited education statistics. It is therefore crucial that, not only an appropriate definition and methodology are used, but that there is a good understanding of the results, their interpretation and limitations. It is important to clearly recognise that the final goal is not only to get children in school but to ensure schooling results in good learning outcomes.

The main purpose of this report is to provide joint global and regional estimates of primary school-age children who are out of school. Until now, international organizations have released varying figures based upon various data and methodologies. This report seeks to avoid this confusion by working jointly on global and regional results based upon a range of data sources. Table A1 in Annex 2 presents national results from various data sources to enable the reader to better evaluate the estimates for a specific country.

This publication draws upon the following data sources: traditional education statistics collected directly from Member States by the UNESCO Institute for Statistics (UIS), hence referred to as administrative data; household survey data collected through the Multiple Cluster Indicators Survey (MICS) conducted by national partners and UNICEF; and the Demographic and Health Survey (DHS) implemented by national partners and ORC Macro.

This chapter is divided into three sections. It begins with a brief introduction of the new methodology developed jointly by UNICEF and the UIS. The methodology provides an improved definition of out-of-school children and uses complementary data from different sources in order to improve the accuracy of the estimates.

The second section presents the results for the 2001/02 school year. It presents the global and regional estimates for the number of out-of-school children, followed by global and regional results by gender and estimates for individual countries.

The third section sets out a framework for distinguishing groups of children who are out of school, e.g. those who never participate in school and those who participate only in part of the primary education cycle.

1.2 A new approach to estimate the number of out-of-school children

Defining out of school

The various global figures on out-of-school children published in recent years have differed not only with respect to their

A robust and transparent definition is critical to counting out-of-school children. results but also in terms of definitions (see Box 1.1). Thus, a robust and transparent definition is crucial to achieve coherent and well-understood statistics. In order to count out-of-school children, five components should be clearly defined:

- What levels of education (e.g. pre-primary, primary, secondary) constitute school?
- What is primary education?
- What is the school-age population to be considered?
- How is 'in school' defined?
- How is 'in school' measured?

The definitions employed for each of these components are outlined in this section.

Box 1.1. Estimates of out-of-school children

The number of out-of-school children reported by UNESCO and UNICEF has often differed substantially. In 2004, UNESCO published the figure of 104 million out-of-school children in its Education for All Global Monitoring Report. In the same year, UNICEF published the figure of 121 million in its flagship report, The State of the World's Children. The new joint estimate presented in this report is different - 115 million children are out of school.

What explains the differences among these measures? For the 2004 estimates, both organizations used the same definition of schoolage population and the same population data. But they used different sources for education data. UNESCO estimates were based solely on administrative data. UNICEF used as a first choice administrative data - but complemented them with data from household surveys - especially where enrolment data were less recent than survey data or were considered unreliable.

The joint estimate presented in this report differs from both of these previous estimates in two ways.

First, it uses a revised set of definitions and methodologies. Previously, all children of eligible age who were not enrolled in primary school even if they were enrolled in secondary school were counted as out of school. The new methodology considers primary-age pupils who are already in secondary education as participating in school. As a result, about 11 million fewer children were counted as out of school. This change also explains why the new joint estimate is lower than previous UNICEF estimates.

Second, the joint estimate combines administrative data and household survey data in order to obtain a more accurate result. For countries where the differences between the two sources had a significant impact on the global estimate, a joint review committee evaluated the data sources and decided which to rely upon. In addition, national information about data was consulted where available. This approach led to a different result than previous UNICEF and UNESCO estimates. It added more than 20 million out-of-school children to the UNESCO global estimate.

Definition, Part 1: Coverage of different levels of education

Children of primary school age are counted as being in school when they are participating either in primary or secondary education. But primary schoolage children in pre-primary education are counted as out of school for several reasons. Pre-primary education cannot always be considered as appropriate for children of primary school age. Enrolment data on pre-primary education by age, which are needed to identify primary school-age children, are missing for too many countries to reach a global estimate. However, pre-primary attendance is of a different quality than no attendance, and so this must be taken into account separately when interpreting figures on the number of out-of-school children, especially at the national level.

In the past, the number of out-of-school children had been calculated exclusively by participation in primary education. This means that primary school-age
children who were attending levels of education other than primary were counted as out of school (see Box 1.1). However, a substantial number of primary school-age children - some 11 million globally attend either at a lower or higher level of education. The availability of data disaggregated by single year of age for secondary education allows for more precise estimates.

Primary school-age children who attend either primary or secondary education are considered to be in school. Those in non-formal education are typically counted as out of school, except when it is recognised as fully equivalent to formal primary education. Primary school-age children who attend pre-primary education are considered to be out of school, although it is recommended to report this separately from the total number of children out of school.

Definition, Part 2: Primary education and the primary school-age population

The concept of out-of-school children implies that there is a group of children that should be in school but is not. This group is recognised both nationally and internationally as primary school-age children. This provides the basis for determining which children are excluded from education. Every country has its own definition of primary education that needs to be translated into a comparable standard in order to assess progress towards international goals. For the purpose of international comparisons, primary education is defined by the International Standard Classification of Education (ISCED 1997). Countries map their national education systems, in co-operation with international agencies, according to the levels of education defined by ISCED. This classification should primarily be based on educational content, although it is not possible to directly assess and compare. Primary education is characterised by the introductory and systematic provision of instruction in reading, writing and mathematics. The distinction between the end of primary and the beginning of lower secondary education can be blurred. ISCED provides some distinguishing criteria: for example, primary level programmes are organised in units or projects rather than by subjects. Lower secondary education begins instruction by subject by teachers with more formal qualifications who conduct classes in their fields of specialisation. Lower secondary education also calls for the full implementation of basic learning skills.

ISCED assumes that the duration needed for the primary level content is six years. However, duration and starting age of educational programmes serve only as subsidiary criteria for the classification. The implementation of ISCED leads to a cross-nationally comparable classification, although the age range for the programmes can differ by country (see Figure 1.1).

In order to define the world's school-age population, crossnational comparisons must refer to ISCED.

In order to define the world's school-age population, crossnational comparisons must refer to ISCED. Cross-national statistics on out-of-school children are not based on a single age group standardised across countries, such as all children aged 6 to 11 years. Children in some countries start primary education at age 6 , while others start at age 5,7 or 8 elsewhere. Thus, a six-year-old child could
be considered out of school in one country and too young to start school in another. This also applies for children beyond the ending age of primary education, which would be between 9 and 13 years of age, depending on the educational system.

The national primary school-age population comprises all children of primary school age in the country - according to ISCED definitions. The global primary school-age population is the total of all national primary school-age populations.

Definition, Part 3: Out of school and participation in school

The joint estimate of the number of children out of school considers the whole school year and not a specific point in time. Children are considered to be out of school if they had no exposure to school during the school year in question. All other children are considered to be participating in school if they attended at any point during the reference period, no matter to what extent they were absent or whether they later dropped out. To avoid confusion with the concepts of enrolment and attendance, this report uses the term participation to denote being in school.

Applying the definition of participation with enrolment and attendance data

How can this definition of in school or participation lead to comparable results when applied to administrative and household survey data? Enrolment data provide the number of children enrolled or registered in school. This is measured differently across countries. Definitions used for international data collections emphasise that the unit of measurement are pupils enrolled, meaning that children registered more than once should be counted only once and that registration is linked to a pupil. ${ }^{1}$ Enrolment data potentially differ from the definition above in three ways. They can:

- overstate participation by counting registered children who never attend school;
- underestimate participation by missing children who attend school without being registered; and
- underestimate participation when enrolment is counted at the beginning of the school year while some children register later in the school year.

[^0]Household surveys allow the estimation of school attendance in two ways: current attendance², the most commonly used estimate, and attendance at some point during the school year, which is the estimate used for this methodology. The latter is based on the parents' or guardians' report as to whether the child is currently at school or, if not, whether the child attended school at some time during the school year. If the answer to either question is "yes", the child is considered to have attended in the reference school year, even if currently absent or out of school. This estimate could be considered to be inter-changeable with current attendance.

Various types of errors and biases are inherent in administrative and/or survey data, such as sampling error, differences in how administrative data are collected across countries, etc. (Sampling errors and confidence intervals are provided in Table A16 of Annex 2.) In addition, the methodology and implementation of data collection for either data source is not fully internationally standardised. Therefore, the errors associated with the data are country-specific and linked to the type of data. The joint methodology assumes that the variances arising from conceptual differences between the basic definition and its implementation are negligible compared to that from errors in cross-country comparison inherent in the data sources. In other words, errors in comparing across countries using one data source are likely to be more substantial than errors introduced by a mix of data sources.

Annex 1, Section 1.3 further discusses potential reasons for differences between results from the two data sources. They seem to be linked to problems associated with the measurement of pupils' ages rather than inconsistencies in the count of pupils.

Figure 1.1. Distribution of population and countries by starting age and duration of primary education, 2001/02

Starting age

[^1][^2]The age range used for the calculation of indicators is defined at the national level, assuming that the starting age, duration and ending age of primary education is identical across the country. This may mask differences among regions or districts within countries. Some children who are not of primary school age according to regional regulations may be counted within the national primary school-age population and thus be incorrectly considered as out of school. Sub-regional differences in primary education structures exist in large, highly-populated countries, such as India and China, but also in smaller ones, including Bangladesh, Bolivia, Cameroon, Costa Rica, El Salvador, Haiti, Honduras, Liberia, Nicaragua, Slovakia, Slovenia, and Trinidad and Tobago.

Calculating the number of primary schoolage children out of school

First, the number of out-of-school children is calculated for each country. Wherever possible, the calculation is made from both data sources. The method of calculation used depends on the data source.

- With administrative data, the number of out-of-school children is calculated as the
difference between the total number of children in the primary school-age population and the number of those children reported as enrolled in either primary or secondary education. (Total population of primary school-age children - number of primary school-age children enrolled in primary or secondary education $=$ number of out-ofschool children.)
- With household survey data, the percentage of out-of-school children in the sampled school-age population is calculated. Then, the percentage is applied to the national number of children of primary school age.
- In both cases, the primary school-age population is based on data provided by the UN Population Division (UNPD).

The second step is to decide which data result should be selected for the global estimate. Annex 1 provides a detailed description of how the global and regional estimates were derived from the different data sources. It describes how the data and metadata were evaluated to combine the two data sources to reach a single estimate.

Box 1.2. Defining primary education

Although cross-national data on primary education are classified according to ISCED, the differences in starting and ending ages and the duration of programmes remain. Figure 1.1 draws a basic global outline of starting ages and duration of primary school based on data for the 2001/02 school year. The top chart shows that in the majority of countries primary education starts at age 6 (119 countries) or 7 (47 countries). These countries are home to 61% and 34%, respectively, of the world's children in this age group. The data thus show that 90% of countries make ages 6 and 7 the official starting ages for primary school and 95% of children live in these countries.

The global picture is more varied with respect to the duration of the primary cycle. As the bottom chart indicates, primary education ranges from three to eight years in duration. However, in 114 countries primary education lasts for six years. Another 29 countries have four-year programmes, 22 countries have seven-year programmes, and 19 countries have five-year cycles. Additionally, half of the global population aged 6 to 11 live in countries with fiveyear programmes. Slightly more than one-third of this age group is found in countries with six-year primary programmes. This is mainly due to the classification of primary education in China and India.

1.3 The global and regional estimates of primary school-age children who are out of school

Global estimates

The number of out-of-school children can be expressed in several ways. This section draws largely on two indicators: the absolute number and rate of out-of-school children. The rate is the total number of out-of-school children as a percentage of all primary school-age children. It is useful for comparisons across countries and regions of different population size. Chapter 2 explores the rate of out-of-school children in relation to other

Figure 1.2. Number of primary school-age children out of school by sex and region, 2001/02
factors, such as place of residence and household wealth.

A total of 115 million primary school-age children were found to be out of school in the year 2001/02 as a result of the joint methodology.

Figure 1.2 presents the total number of out-ofschool children by region, based on the joint methodology. The greatest numbers of out-ofschool children (42 million) live in South Asia, followed by West and Central Africa with 24 million, and Eastern and Southern Africa with 21 million. Together these three regions account for threequarters of the global total (see Figure 1.3).

[^3]Source: UNICEFIUNESCO Institute for Statistics, Table 1.1.
Figure 1.3. Distribution of out-of-school children of primary school age by region, 2001/02

Source: UNICEFIUNESCO Institute for Statistics, Table 1.1.

Expressed in another way, 18\% - or almost one in five - of the world's 650 million children of primary school age are not in school. Clearly, there are some widely different regional patterns behind this global average (see Figure 1.4). Almost half of the children in West and Central Africa are out of school, and more than one-third in Eastern and Southern Africa. In South Asia, this proportion exceeds one-quarter. On the contrary, not more than 6% of children are out of school in East Asia and the Pacific, Latin America and the Caribbean, in addition to industrialised countries.

Almost one in five (18\%) of all primary school-age children in the world are not in school.

Figure 1.4. Primary school-age children out of school by region, 2001/02

Note: Regional results are weighted by the size of the school-age population.
Source: UNICEFIUNESCO Institute for Statistics, Table 1.1.

TABLE 1.1. PRIMARY SCHOOL-AGE CHILDREN OUT OF SCHOOL BY REGION, $2001 / 02$

Country or territory	School-age population (thousands)			Percentage of all children of primary school age						Absolute number of children			
				In school			Out of school			Out of school (thousands)			
	Total	Male	Female	\% Female									
Central and Eastern Europe / CIS	24,998	12,751	12,247	88.3	89.5	87.1	11.7	10.5	12.9	2,922	1,339	1,583	54.2
Middle East and North Africa	47,116	24,077	23,039	81.3	84.6	77.9	18.7	15.4	22.1	8,797	3,705	5,092	57.9
Eastern and Southern Africa	55,706	27,919	27,787	61.5	62.2	60.9	38.5	37.8	39.1	21,421	10,566	10,855	50.7
West and Central Africa	53,061	26,771	26,289	54.7	58.7	50.7	45.3	41.3	49.3	24,024	11,052	12,972	54.0
South Asia	162,720	84,025	78,694	74.0	77.7	70.1	26.0	22.3	29.9	42,294	18,742	23,552	55.7
East Asia and the Pacific	176,287	91,651	84,636	94.3	94.4	94.2	5.7	5.6	5.8	10,029	5,158	4,870	48.6
Latin America and the Caribbean	58,064	29,565	28,499	94.3	93.9	94.7	5.7	6.1	5.3	3,286	1,789	1,497	45.6
Industrialised countries	70,595	36,247	34,348	96.3	96.0	96.6	3.7	4.0	3.4	2,602	1,433	1,169	44.9
World	648,545	333,006	315,539	82.2	83.8	80.5	17.8	16.2	19.5	115,375	53,784	61,590	53.4

[^4]
Gender

Countries made international commitments towards eliminating gender disparities in primary education by 2005. Gender parity in primary education is reflected in the fifth goal of the Dakar Framework for Action 2000 and the third Millennium Development Goal. There are many countries still far from reaching this goal as shown

Globally, 61.6 million girls of primary school age are not in school, accounting for 53\% of the total number of children out of school.
by the following three indicators: absolute numbers; the share of primary school-age girls among the total number of out-of-school children; and finally, differences in out-of-school rates among girls and boys.

In absolute terms, 61.6 million girls of primary school age around the world are not in school, compared to 53.8 million boys. In other words, girls account for 53% of the world's out of school children. While 16% of the world's primary schoolage boys are out of school, the figure is higher for girls at 20%. In short, one in five eligible girls does not go to school.

Figure 1.5 shows the share of girls among out-ofschool children which should be interpreted in concert with Figure 1.4, which presents rates of

Figure 1.5. Distribution of primary school-age children out of school by sex and region, 2001/02

In East Asia and the Pacific, Latin America and the Caribbean and the industrialised countries, a slight majority of out-of-school children are male.

Although gender differences are substantial in some regions, gender is far from being the most important factor globally to deter children from attending school. Chapter 2 draws on micro-level data to better identify the characteristics of out-of-school children, including a more detailed discussion of gender differences.

[^5]It is important to note that global and regional results mask high gender disparities in individual countries. Figure 1.6 presents countries with the highest gender gaps, e.g. where girls or boys are at a disadvantage. For example, there are twice as many girls as boys out of school in Equatorial Guinea and Grenada. In Chad, Côte d'Ivoire, Egypt, Iraq, Liberia, Morocco, Turkey and Yemen, there are three to four girls out of school for every two boys. The fact that India has the world's largest numbers of out-of-school and primary school eligible
children has an enormous impact on the global levels of gender disparity.

As expected, a few countries show gender disparities that are weighted against boys (see second chart of Figure 1.6). There are 1.5 boys - or more - for every girl who is out of school in the Bahamas, Brazil, Lesotho, Mongolia, the Netherlands Antilles, Philippines and Saint Kitts and Nevis. Typically, these countries also have lower rates of children out of school.

Figure 1.6. Gender disparity among primary school-age children out of school by country, 2001/02
Countries with more girls out of school

Countries with more boys out of school

Note: 1) Results based on household surveys.
2) Data refer to a different school year. See source table.

The gender parity index (GPI) expresses the number of girls divided by the number of boys out of school. The top chart presents the GPI, the bottom chart the reciprocal value of the GPI, so as to put disadvantages for each gender on a comparable scale.

The chart presents countries with a GPI greater than 1.2 or the reciprocal value above 1.2. Countries with less than 5% of their children out of school are excluded.

Regional profiles

The following section presents data on out-of-school children by region and for individual countries. Wherever data are available, the report distinguishes between the number of primary school-age children completely out of school and those still in preprimary education. This was possible for about half of the countries, which were able to provide data by age for pre-primary school participation.

South Asia

South Asia is home to one-quarter of the world's primary school-age population. It is also the region with the highest absolute number of out-of-school children: 42 million of the 162 million school-age

More than one-third of out-of-school children live in South Asia. children in the region (or 26%) were out of school in 2001/02. These boys and girls account for 36% of the world's out-of-school children. In relative terms, on average one out of four school-age children in the region did not attend school in the reference year (see Figures 1.2-1.4).

The highest share in South Asia is found in Pakistan, where more than 8 million of almost 20 million school-age children (or 40%) are out of school. Nepal has the second-highest (34\%) number of out-of-school children in the region. Figure 1.8 presents these proportions in countries for which data are available. It excludes countries with fewer than 5\% of children not participating in school.

Not surprisingly, India - the second most populous country in the world - has the highest absolute number of out-of-school children. According to the MICS 2000 survey, almost 27 million school-age children in India do not attend school, or one out of four. India alone accounts for 23% of the global total. In Bangladesh, one out of five or 3.7 million primary school-age children are out of school.

Two of the region's six countries with data available show near-universal primary school participation. Fewer than 5\% of children are out of school in Sri Lanka and the Maldives (see Figure 1.7).
Figure 1.7. Primary school-age children out of school by country, 2001/02

[^6]Figure 1.8. Out-of-school children of primary school age in countries with rates above 5\%, 2001/02

Note: 1) Results based on household surveys.
2) Data refer to a year different from 2001/02. For the exact year, see Statistical Table A1.

Countries with less than 5\% of out-of-school children are not displayed in the chart.
Data on participation in pre-primary are presented for countries with available data. Otherwise it is included in the total of out-of-school children. See Statistical Table A1 for the availability of data on pre-primary education.

Source: UNICEFIUNESCO Institute for Statistics, Statistical Table A1.

West and Central Africa

West and Central Africa has the highest prevalence of primary school-age children out of school. Although the region's primary school-age

Almost every second
child of primary school age in West and Central Africa is out of school. population accounts for just 8\% of the global total, the region has 20% of the world's out-of-school children - the second highest share after South Asia. In absolute terms, 24 million out-of-school children live in the region. The proportion in the region is 45% - or almost every second child (see Figures 1.2-1.4).

In a number of countries, the majority of school-age children are not in school, reaching as high as twothirds of the relevant age

In some countries, two-thirds of schoolage children are not in school. group. As Figure 1.8 shows, in Burkina Faso, the Central African Republic, the Democratic Republic of Congo, Guinea-Bissau, Mali, Niger and Sierra Leone, the share of school-age children not in school ranges from 50\% to 66\%.

Virtually no country in this region is close to universal primary education. The only exception is Sao Tome and Principe, the small island republic in the Gulf of Guinea, where administrative data show a participation rate of more than 95\% (however, rates based on household survey data are much lower; see Statistical Table A1).

Eastern and Southern Africa

More than one-third of all primary school-age children in Eastern and Southern Africa are out of school.

Eastern and Southern Africa has the thirdlargest population of out-of-school children in the world - 21 million in all. In terms of the rate of children out of school, the region is second after West and Central Africa. More than one-third of all
primary children in the region are not in school (see Figures 1.2-1.4).

Somalia has the dismal distinction of having the world's highest proportion of primary school-age children not in school. Here, 1.6 million out of 1.8 million eligible children - nine out of ten girls and boys - are unable to access education. This is the result of years of factional conflict and the lack of a national government. Out-of-school rates exceed 50\% in the neighbouring countries of Eritrea and

Nine out of ten children are out of school in Somalia, the highest national rate in the world. Ethiopia, which have also experienced armed conflict. Finally, Burundi, Comoros, Mozambique and Tanzania have out-of-school rates greater than 40\% (see Figure 1.8).

The effect of pre-primary school attendance varies widely in sub-Saharan Africa. In Angola, more than 10% of primary school-age children are still participating in pre-primary education (see Figure 1.8). In the Seychelles, over 95% of children considered to be out of school are enrolled in preprimary education.

Middle East and North Africa

The Middle East and North Africa region is home to 8.8 million out-of-school children, or 20% of all primary school-age children in the region (see Figures 1.2-1.4). There is, however, marked variation among countries. The highest proportions of out-of-school children are found in Djibouti and Sudan, with 65% and 51%, respectively. They are followed by Yemen and Saudi Arabia, with more than 40\% each. On the other hand, the proportion is less than 10% in nine countries, e.g. Algeria, Egypt, Libya and Syria. Almost all countries in the region report very low rates of primary school-age children who are still in pre-primary education (see Figure 1.8).

East Asia and the Pacific

Participation rates are generally high in East Asia and the Pacific. China is the most populous country in the region - with more than 60\% of the region's children - and it has a high participation rate (96\%) for primary school. Eleven other countries also report that more than 95% of all primary schoolage children are in school (see Figure 1.7). However, there are several exceptions, such as Cambodia and Papua New Guinea, where some 30\% of primary school-age children are out of school (see Figure 1.8).

Latin America and the Caribbean

In Latin America and the Caribbean, 95\% of all children are participating in education.

In Latin America and the Caribbean, only 5% of all primary school-age children, about 3 million, are not in school. About half of the countries in the region report more than 95\% of all children in school (see Figures 1.2-1.4).

Haiti is the notable exception: almost every second child of primary school age is not in school, which amounts to about 570,000 children. It has the second-largest out-of-school population in the region - even after Brazil, which has 10 times more children.

There are several countries in the region that report more than 10% of primary school-age children not in school: Colombia, Grenada, Guatemala, Honduras, the Netherlands Antilles, Nicaragua and Saint Kitts and Nevis. However, in a number of countries, e.g. Brazil, British Virgin Islands, and Costa Rica, a substantial proportion of these children are in fact participating in pre-primary education (see Figure 1.8).

Central and Eastern Europe and the Commonwealth of Independent States

Central and Eastern Europe and the Commonwealth of Independent States is the region with the smallest population of primary school-age children - 25 million. Nonetheless, almost 3 million are not in school. At a rate of 11%, the share is twice that of Latin America and the Caribbean, as well as that of industrialised countries (see Figures 1.2-1.4). This demonstrates that the high participation rates typical under Soviet and communist rule have not
been maintained in some countries. Countries with the highest proportion - more than 15% - of primary school-age children not in school include Azerbaijan, the Republic of Moldova, Serbia and Montenegro, as well as Uzbekistan (see Figure 1.8).

In terms of absolute numbers, most of the region's out-of-school children live in its two most populous countries, the Russian Federation (0.5 million) and Turkey (1 million). With exclusion rates of 12% and 11%, respectively, both countries are close to the regional average.

Four countries in the region report participation rates greater than 95\%: Albania, the former Yugoslav Republic of Macedonia, Kazakhstan and Tajikistan. In Belarus and the Republic of Moldova, most of the primary school-age children considered to be out of school are participating in pre-primary education.

Industrialised countries

Not surprisingly, the lowest proportions of children not in school - less than 4\% - can be found in the industrialised countries, totaling 2.6 million children. Of the 36 countries for which data are available, 30 countries report that more than 95\% of the primary school-age cohort are participating in primary or secondary education (see Figures 1.21.4).

However, exceptions do exist. In several countries, many children who start school late attend preprimary education though they are of primary school starting age. Yet, for many industrialised countries, no reliable data exist on the exact enrolment rates for the first year of primary school age (see Annex 1, Section A for further details).

But, not all children out of school in these well-off countries are in pre-primary education. In Latvia, 10% of the primary-age cohort does not attend either pre-primary or primary school. The United States also has a relatively high share of primary school-age children not attending either primary or pre-primary education (4.3\%). There are several possible explanations: first, that children start primary school late, and second, that they participate in home-schooling as in the United States. But even these factors do not fully explain the total number of out-of-school children in those countries.

1.4 A framework for classifying out-ofschool children

A typology of out-of-school children helps to distinguish the different types of out-of-school status. The framework distinguishes amongst groups in terms of policies aimed at reducing the number of out-of-school children. Different policies are needed in order to provide access to those excluded from the school system, to ensure that children start school in time, or to ensure that they complete a full cycle of primary education.

Out-of-school children
 can be grouped into those who have not yet entered school and those who have dropped out.

Out-of-school children of primary school age fall into two main groups with respect to their exposure to education. The first group consists of children who have yet to start school. The second group comprises children who have dropped out before reaching the theoretical completion age for primary school.

The first group can be broken down further in terms of the probability of future school participation. There is a good chance that many of these children, especially those at younger ages, will start school at some point in the future. Some, however, will never begin schooling. Examining rates of school participation for older primary school-age children allows one to judge the proportion of young out-ofschool children that may be expected to enter primary school late.

By way of illustration, Figures 1.9 and 1.10 highlight the age profiles of out-of-school children for selected countries. The graphs show how the relative size of each of the three types of out-of-school children differs across countries.

Figure 1.9. Out-of-school children by age and school exposure in Zambia, 2001/02

Figure 1.9 presents the case of Zambia. As many as 61% of 7 -year-olds and 44% of 8 -year-olds had yet to attend school. This "never attended" group is much smaller among older children. The proportion of children who have never been to school drops to below 10% by the age of 15 , which suggests Some out-of-school children will enter school late, others will never benefit. that a considerable number of those 7 - and 8 -year-olds who were out of school could be expected to start school later. In fact, given the participation rates for older children, the probability that an out-of-school 7 -year-old in Zambia will eventually start school is six to one. On the other hand, 23% of 13 -year-olds, the theoretical age for completing primary school, are out of school. Half were never in school and the other half dropped out.

The Zambian situation can be analysed from two perspectives. The longitudinal perspective looks at children born in the same year and analyses the exposure of that group over the duration of their years of primary school age. Given the data available, the longitudinal perspective reflects a synthetic cohort, which is based on the assumption that the participation rates observed in the survey year remain unchanged over time. Another perspective takes a "snapshot" of the whole primary school-age group at one point in time.

From the longitudinal perspective, there appears to be a core group (12\%) of children who never attend school between the ages of 7 to 13 . They grow up without any formal education. Another 49% of an age cohort starts education late. Finally, 11\% appear to drop out before they reach the theoretical primary completion age.

A "snapshot" of primary school-age children in Zambia represents the average participation rate over the primary school ages. It shows that in 2001/02, 32\% of primary school-age children were out of school. Within this group, 38\% can be expected to never go to school, 24\% already dropped out, and another 38\% can be expected to enter school in years to come.

A comparison of age profiles across countries, as presented in Figure 1.10, helps to identify and illustrate different patterns of exclusion from education.

Figure 1.10. Out-of-school children by age and school exposure in selected countries

systems. It is worth noting that, in most countries, the majority of children who drop out do so after they have passed the end of primary school age. This does not mean, however, that they have completed primary school (see Box 1.3).

It is important to note that no single pattern of exclusion predominates in countries with high numbers of out-of-school children. All three out-ofschool types - late entry, early dropout and never attending - contribute to the total number.

Box 1.3. At which age do children drop out from school?

Staying in school until the end of primary school age is not the same as completing primary education. Due to late entry and/or grade repetition, a child may reach the expected graduation age without having completed primary school. Indeed, pupils who are overage for their grade have been shown to be at greater risk of dropping out later (Wils, 2004).

Figure 1.11 presents data for pupils who did not complete primary education in selected countries. For each country, it presents the dropouts by age group - whether they were of primary school age when they left school or whether they were older. The graph shows that the majority of these children
were older than the typical ending age for primary school. Indeed, in 9 out of the 15 countries presented, the majority of children left school when they were already three or more years older than the expected ending age for primary education.

These findings emphasise that focusing only on the primary school-age group can mask the real scale of dropout rates. Nevertheless, the high proportion of overage dropouts indicates the importance of children starting school in time and moving smoothly through the system. Indicators that track children by age are needed to monitor these aspects of education systems (see Langsten and Hassan, forthcoming).

Figure 1.11. Children leaving school without completing primary education by age range

Global patterns

Of the world's 115 million children who are out of school, what share can be expected to enter school late, to have dropped out or to never attend school? The typology can be applied at the global level, although it should be noted that this approach provides only a rough indicator of the distribution of out-of-school children. For further details on the calculation of this indicator, see Annex 1.

Figure 1.12 shows that two out of three children who were not in school in 2001/02 will probably never attend during their primary school-age years. In other words, the vast majority of these children are completely excluded from education.

On the other hand, one out of three children who are currently out of school will or have already received some primary education. In other words, the education system connects with the child but not at the intended age or for the intended duration.

Late-starters account for 29\% of the total number of out-of-school children. Children who drop out make up just 6\%. However, it should be emphasised that leaving school without completing a full cycle
of primary education is still problematic. Yet, because this occurs mainly among older ages, it is not fully captured by statistics on primary school-age children.

Figure 1.12 shows the variation in the different types of out-ofschool children by region. In Africa, South Asia, and Central and East Europe and the Commonwealth of Independent States (CIS),

Two-thirds of the world's out-ofschool children grow up without any education. children who are out of school will most likely never attend - although the phenomena of late entry or early dropout should not be ignored. The picture is different in East Asia and the Pacific, Latin America and the Caribbean and the industrialised countries. Here out-of-school children can typically be expected to enter school late. Less than one-quarter of these children are completely excluded from education.

The following charts take a different perspective by looking at cohorts of children born in the same year. Figure 1.13 shows the percentage of children of official school entry age who are not in school. They are further disaggregated according to the likelihood that they will enter school in the future. Globally, 28\% of all children at official school-entry age are not in school. This indicates that one out of four children are out of school for one

Globally, more than one in four children are out of school during one or more years of primary school age. One in ten will never attend primary school. or more years of their primary school-age span. Eventually, most of them attend school for more than one year. Nevertheless, 12% of children will never attend school - or one in 10 children will grow up excluded from education.

In West and Central Africa, as well as in Eastern and Southern Africa, almost 60\% of all children at official school-entry age are not in school. Most of them will never attend. The same is true in South Asia, where 36% of children at entry age are not in school. The picture is quite different in East Asia and the Pacific, Latin America and the Caribbean and the industrialised countries. Here, there is also a significant proportion of children at entry age who are not in school (14\%), but almost all of them can be expected to start later.

Figure 1.13. Children of official school-entry age not in school by expected participation and region, 2001/02

Figure 1.14 shows the percentage of children who will likely never attend school by country. High levels of exclusion are found mainly in countries of sub-Saharan Africa and to a lesser extent in South and East Asia. Every second child in Burkina Faso, the Democratic Republic of the Congo, Djibouti, Eritrea, Ethiopia, Mali, Sierra Leone and Somalia will grow up without any education if current trends continue. Every third child will grow up without going to school in Burundi, Central African Republic, Comoros, Guinea-Bissau, Niger and the United Republic of Tanzania. Outside Africa, such high levels are found only in Pakistan and Saudi Arabia.

With few exceptions, all other countries with exclusion rates greater than 10% are also found in Africa or in South and East Asia, notably Nepal (17\%), India (15\%), Bangladesh (14\%), Lao PDR (13\%) and Cambodia (12\%).The only exceptions, where data are available, are Haiti (19\%) and Papua New Guinea (13\%).

Figure 1.15 presents the proportion of out-of-school children of the official school-entry age who are expected to enter later. The figure shows that delayed entry is widespread across all regions. Indeed, in East Asia and the Pacific, the Americas and Europe, it is the single-most important factor keeping children out of school. It is estimated that more than 50% of children will enter at least one year later than the primary school-entry age in 13 countries or more, including: Botswana, Gabon, Liberia, Namibia, and Uganda. Most notable are countries that have high rates of late entry and never entering, such as Cambodia, Haiti, Senegal and Uganda.

As mentioned earlier, some out-of-school children who will enter primary school late are actually still in pre-primary education. This is the case for more than 5% of the primary school-age children in Liberia, St. Kitts and Nevis, and Thailand.

Figure 1.14. Percentage of a single-year age cohort expected to never attend school, 2001/02
Figure 1.15. Percentage of a single-year age cohort expected to enter school delayed, 2001/02

[^7]
CHAPTER 2 Assessing the characteristics of out-of-school children

2.1 Introduction

This report presents a new global total for the number of out-ofschool children - 115 million. This figure is the outcome of a joint calculation by UNESCO and UNICEF, as described in detail in Chapter 1. It sets a new common baseline for the number of children who are of primary school age but who are not in primary or secondary school. The collaboration by these two lead agencies has helped to establish more authoritative estimates, not only on the global total of out-of-school children, but on their distribution by region and country as well.

This chapter looks at these numbers from the perspective of the child. We know how many out-of-school children there are and where they are; now we ask, who are they? The aim of this chapter is to add a more detailed portrait of out-of-school children by presenting the socio-economic and demographic characteristics of these children, as well as their parents and households. This information is vital for effective policy development and appropriate programmes or interventions. Specifically, this chapter looks at out-of-school children by sex, mother's education, household wealth and place of residence (urban/rural). Age is presented as a cross-cutting variable. The analysis explores whether and how much each characteristic influences the number of out-of-school children.

It should be noted that, in contrast to Chapter 1, the analysis in this chapter is based on data from household surveys and does not include the group of industrialised countries. The data, available for 80 countries, were collected between 1996 and 2003 as part of the Multiple Indicator Cluster Surveys (MICS), conducted by UNICEF, and the Demographic and Health Surveys (DHS), conducted by ORC Macro with funding from USAID. Results are presented for each country and globally for the following regions:

Overall, these 80 countries reflect 59% of the world's primary school-age population. In Eastern and Southern Africa, West and Central Africa, and South Asia, more than 96% of children are covered by the surveys. In other regions, the coverage ranges between 39\% and 59\%. Although the group of industrialised countries is not included in the surveys, they cover the countries where 83% of out-of-school children live. Estimates presented are weighted averages of available country data.

Central and Eastern Europe, Commonwealth of Independent States (CEE/CIS): 9/20 countries or territories

Armenia, Azerbaijan, Bosnia and Herzegovina, Kazakhstan, Kyrgyzstan, Moldova, Tajikistan, Turkey, Uzbekistan
Middle East and North Africa: 7/20 countries or territories
Algeria, Bahrain, Egypt, Iraq, Lebanon, Sudan, Yemen
Eastern and Southern Africa: 20/22 countries or territories
Angola, Botswana, Burundi, Comoros, Eritrea, Ethiopia, Kenya, Lesotho, Madagascar, Malawi, Mozambique, Namibia, Rwanda, Somalia, South Africa, Swaziland, Tanzania, Uganda, Zambia, Zimbabwe

West and Central Africa: 21/24 countries or territories
Benin, Burkina Faso, Central African Republic, Cameroon, Chad, Congo (Democratic Republic), Côte d'Ivoire, Equatorial Guinea, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Mali, Mauritania, Niger, Nigeria, Sao Tome and Principe, Senegal, Sierra Leone, Togo

South Asia: 4/8 countries or territories
Bangladesh, India, Nepal, Pakistan
East Asia and the Pacific: 7/30 countries or territories
Cambodia, Indonesia, Lao PDR, Mongolia, Myanmar, Philippines, Viet Nam

Latin America and the Caribbean: 12/41 countries or territories
Bolivia, Brazil, Colombia, Dominican Republic, Guatemala, Guyana, Haiti, Nicaragua, Peru, Suriname, Trinidad and Tobago, Venezuela

2.2 Demographic and socio-economic determinants

Based on the available household survey data, it is estimated that 26% of primary school-age children in these 80 countries were out of school (Figure 2.1). The data from household surveys also indicate that, in relation to the existing primary school population in each region, the highest proportions of children out of school are observed in Africa, South Asia and the Middle East and North Africa. These estimates are similar to the global estimates by region presented in Chapter 1. In 14 African countries, survey data show that one-half or more of primary school-age children are not attending school: Somalia (89\%), Burkina Faso (72\%), Niger (70\%), Comoros and Ethiopia (69\%), Mali and Chad (61\%), Guinea (60%), Guinea-Bissau and Sierra Leone (59\%), Central African Republic (57\%), Mauritania (56\%), Burundi (55\%) and Senegal (52\%) (see Statistical Table A3).

However, since the population of primary schoolage children differs by region, we also find that 44% of out-of-school children live in Africa (23% in West and Central and 21% in Eastern and

India, Pakistan, Nigeria and Ethiopia have the greatest numbers of out-of-school children. Southern), followed by South Asia with 40%. At the country level, India, Pakistan, Nigeria and Ethiopia have the greatest numbers of children out of school.

Figure 2.2 provides a profile of the global out-ofschool population for the 80 survey countries by sex, mother's education, household wealth, and place of residence. It shows that in these countries:

- A greater share of girls is out of school - 28% compared to 24% of boys.
- More than twice as many children whose mothers have no education are out of school 36% compared to 16% for children of mothers with some education.
- More than three times as many children from the poorest 20% of households are out of school compared to those from the richest 20\% of households - 38% compared to 12%.
- A much greater share of children who live in rural areas are out of school than those who live in urban areas - 30% compared to 18%.

Often, these factors interact with each other. The multi-variate analysis presented in Section 2.3 attempts to identify the net effects and relative significance of each factor.

Figure 2.1 Primary school-age children out of school by region based on household survey data, 1996-2003

Note: Based on surveys conducted in 80 countries.
Source: UNICEFIUNESCO Institute for Statistics, Statistical Table A3

Figure 2.2. Primary school-age children out of school by background characteristics, 1996-2003

Age

The age of a child is one of the most important variables to be considered when analysing patterns of school (non-)attendance. More specifically, as raised in Chapter 1, it matters whether children start school at the prescribed entry age and, thereafter, whether they are in the appropriate grade for their age. When children start late or repeat grades, it increases the likelihood that they will drop out before completion. The analysis considers the effect of age as part of case studies in four countries: India, Indonesia, Mali and Nigeria. Each case study looks at one of the four key determinants - sex, mother's education, household wealth, place of residence - through the lens of age. It is important to note that the analysis draws on data for the entire school-age range collected by the individual surveys. For India, the data cover school attendance for household members aged 5 to 14 years; for Indonesia, Mali and Nigeria, for household members aged 5 to 24 years.

For the purpose of the analysis, the children are divided into three distinct groups:

- The first group covers children who are currently attending school, regardless of level (e.g. primary, secondary or tertiary education).
- The second group covers children who have never attended formal education. However, this may include children who are of school age but attend pre-primary programmes or nonstandard forms of education.
- The third group covers children who have attended primary, secondary or tertiary education in the past but have since left school.

The second and third groups together comprise the share of school-age children who are out of school.

The countries in the case studies represent a wide range of primary school-age participation levels, from 39% in Mali to 94% in Indonesia. Nigeria and India present intermediate values at 62% and 77%, respectively. It is important to note that most of the
remaining children have never gone to school and, therefore, the dropout rates for school are relatively low in all four countries.

However, patterns become more complex when viewed from a broader age perspective. Leaving school is much more pronounced at the secondary level. In Indonesia, the dropout rate is particularly high - 38% of secondary school-age youth leave school. Clearly, the factors that produce a very high rate of participation at the

38\% of secondary school-age children drop out of school in Indonesia. primary level (94\%) are no longer present at the secondary school level, where participation falls to 61%. What is hindering the transition from primary to secondary school? And what must change to keep those at the secondary level in school? Furthermore, it is important to look at secondary school-age children who are still in primary school. For example, in Mali, more than one-half of the children of secondary school age are still in primary school. What are their prospects and what can be done to ensure that they stay in school and progress to secondary education?

Sex

Household survey data for the 80 countries indicate that for every 100 boys of primary school age who are not in school, there are 117 girls out of school (Figure 2.3). Exclusion of primary school-age girls is particularly marked in the Middle East and North Africa (134 girls to 100 boys); South

Exclusion of primary school-age girls is marked in the Middle East and North Africa, South Asia, and West and Central Africa. Asia (129:100); and West and Central Africa (118:100); and in individual countries like Yemen (184:100), Iraq (176:100), India and Benin (136:100), Nepal (135:100), Egypt (131:100), Pakistan (129:100) and Togo (126:100).

On the other hand, the out-of-school ratio in Latin America and the Caribbean is 96 girls to 100 boys. Nonetheless, some countries in the region still have high rates of exclusion of girls - Bolivia, Guatemala and Peru all have ratios greater than 120:100 (see Statistical Table A3).

Figure 2.3. Children out of school by sex and region, 1996-2003

Figure 2.4. Distribution of primary school-age out-of-school children by sex and region, 1996-2003

Box 2.1. Case study - Sex, age and exclusion in India

In India, the official age range for primary school is 6 to 10 years, and 11 to 17 years for secondary school. As Figure 2.5 shows, there are some children younger than 6 years who attend primary school and a much larger number who are still in primary school at older ages (11 to 14 years). The main
factors for the latter are late entry into school and grade repetition. Figure 2.6 shows the substantial share of children aged 8 years and older who attend a grade lower than prescribed for their age. These pupils fall into the overage category.

Figure 2.5. School attendance by sex and age in India, 2000

Figure 2.6. Overage and underage children by sex and age in India, 2000

Note: Official primary school ages: 6 to 10 years; official secondary school ages: 11 to 17 years.
Source: MICS, 2000.

Table 2.1. School attendance by sex and ace in India, 2000
Age group

Note: A more complete description of the patterns of school attendance in India, Indonesia, Mali and Nigeria is included in Statistical Tables A10 to A13.
Source: MICS, 2000.

As expected, the dropout rate is much higher at secondary school ages (11%) than at primary school ages (less than 2\%). As Figure 2.5 indicates and Table 2.1 confirms, girls at older ages are slightly more likely to drop out of school than boys (12\% compared to 10%).

Place of residence

Place of residence (i.e. urban or rural location) also influences the likelihood that a child will be out of school. The proportion of children out of school is greater in rural areas; in fact, almost double that observed in urban areas, 30% compared to 18%. Since most children of primary school age in developing countries live in rural areas, it is not surprising that 82% of out-of-school children live in rural areas (see Figure 2.7).
(84\%) and West and Central Africa (81%), more than 8 in 10 children who are out of school live in rural households (see Figure 2.8). This compares to 60% in the Latin America and Caribbean region. In some countries, the share of the rural out-of-school population is very high: Ethiopia (96\%), Burkina Faso (95\%), Malawi (94\%), India and Bangladesh (84\%), and Pakistan (81%). These high levels are shaped by very large population sizes (e.g. India) or very low levels of school attendance (e.g. Burkina Faso and Ethiopia) (see Statistical Table A4).

As concluded later in this chapter, the net effect of

More than 8 in 10 out-of-school children live in rural households in Eastern and Southern Africa, South Asia, and West and Central Africa. place of residence on the probability of a child being out of school is significant for only a limited number of countries once other socio-economic and demographic variables are taken into consideration.

82\% of out-ofschool children live in rural areas.

In all regions, except CEE/CIS, the share of children out of school is 1.5 to almost 2 times higher among children living in rural households than their urban counterparts. In 24 countries, the ratio is substantially greater than 2 , e.g. Ethiopia (3.2), Eritrea (3.0), Burkina Faso and Nicaragua (2.9), Iraq (2.7), and (at 2.5) Guinea, Guinea-Bissau, Lao PDR and Malawi (see Statistical Table A3).

In three regions, Eastern and Southern Africa (87\%), South Asia

Figure 2.7. Primary school-age children out of school by place of residence and region, 1996-2003

Note: Based on household surveys conducted in 80 countries.
Source: UNICEFIUNESCO Institute for Statistics, Statistical Table A3.

Figure 2.8. Distribution of primary school-age children out of school by place of residence and region, 1996-2003

Note: Based on household surveys conducted in 80 countries.
Source: UNICEFIUNESCO Institute for Statistics, Statistical Table A4.

Box 2.2. Case study - Place of residence, age and exclusion in Indonesia

The primary school cycle in Indonesia covers children aged 7 to 12 years, while secondary school covers children aged 13 to 18 years. In urban and rural areas, the education system reaches both populations, with only a small percentage of children of primary and secondary school ages who have never been in school (see Figure 2.9). It is also notable that, although almost all children in Indonesia attend school at some time, the proportion that leaves school increases greatly
during the secondary school ages. It appears that rural children are more likely to drop out, with 48\% of secondary school-age children leaving school, compared to 30% in urban areas (see Table 2.2).

A significant proportion of children attending school are in a lower grade than prescribed for their age (see overage bars in Figure 2.10) and, again, this phenomenon is more common among children of primary school age living in rural areas.

Figure 2.9. School attendance by place of residence in Indonesia, 2002/03

Figure 2.10. Overage and underage children and youth by place of residence in Indonesia, 2002/03

Note: Official primary school ages: 7 to 12 years; official secondary school ages: 13 to 18 years.
Source: DHS, 2002/03

Both dropout and repetition rates appear to be important and biased
towards less-favoured populations. A more detailed analysis of these two

Table 2.2. School attendance by age and place of residence in Indonesia, 2002/03

Age group	Place of residence	School-age children (\%)							
		Pre-primary non-standard	Primary	Secondary	Tertiary	Left school	Never in school	$\begin{gathered} \text { In } \\ \text { school } \end{gathered}$	Out of school
Primary school age	Urban	0.0	86.7	9.4	0.0	2.2	1.7	96.0	4.0
	Rural	0.2	87.9	5.2	0.0	3.2	3.6	93.2	6.8
Secondary school age	Urban	0.0	4.1	64.0	1.9	29.6	0.5	70.0	30.0
	Rural	0.0	7.9	43.9	0.2	46.6	1.5	51.9	48.1

Note: A more complete description of the patterns of school attendance in India, Indonesia, Mali and Nigeria is included in Statistical Tables A10 to A13.
Source: DHS, 2002/03.
issues is needed to better understand their determinants, as well as appropriate policies and interventions. Indeed, dropout rates are higher in rural areas, among the poorest 20% of the population and among households where mothers have no education.

Household wealth

A measure of household wealth, used here as a proxy for poverty, is constructed with data on household assets that were collected in the MICS and DHS surveys. Filmer and Pritchett (2001) have shown that an asset-based indicator of household wealth can represent an alternative to those based on household income and expenditures. The wealth index classifies households and individuals in quintiles, making it possible to compare groups living in poverty in more than one way. For the purpose of this analysis, comparisons are made between the poorest and richest 20% of households in which children live and between the poorest 60% and the richest 40%.

Household survey data show that children of primary school age who live in the poorest 20% of households are three times more likely to be out of school than children living in the richest 20\% (see
Figure 2.11). Behind these figures are a range of regional and country values. The greatest disparities are found in both the Middle East and North Africa region and Latin America and the Caribbean region, where children in the poorest quintile are 4.5 times

Primary school-age children who live in the poorest 20\% of households are three times more likely to be out of school than children in the richest 20\%. more likely to be out of school than those in the wealthiest quintile. Countries in the CEE/CIS region, on the other hand, show much lower levels of disparity (1.6 times).

Figure 2.11. Primary school-age children out of school by household wealth and region, 1996-2003

Note: Based on household surveys conducted in 80 countries. Source: UNICEFIUNESCO Institute for Statistics, Statistical Table A3.

Figure 2.12. Distribution of children out of school by household wealth and region, 1996-2003

Source: UNICEFIUNESCO Institute for Statistics, Statistical Table A4.

However, in every region there are countries where the gap between rich and poor is great. Poorer primary school-age children are far more likely to be out of school than the richer children in Nicaragua, Peru, Suriname and Venezuela (6 times or more) in Latin America and the Caribbean; Indonesia (5.6) in East Asia and the Pacific; Cameroon (5) in West and Central Africa; Kazakhstan and the Republic of Moldova (5 or more) in CEE/CIS; Eritrea, Madagascar and Zambia (4.9 and more) in Eastern and Southern Africa; Algeria, Bahrain and Sudan (4.9 or more) in the

84\% of out-of-school children in Latin America and the Caribbean come from the poorest 60\% of households. Middle East and North Africa; and India (3.4) in South Asia (see Statistical Table A3).

Each wealth quintile makes an unequal contribution to the overall number of out-ofschool children. The poorest 60% of households are home to 77% of out-of-school children in the countries surveyed. At the regional level, in Latin

America and the Caribbean the poorest 60\% of households account for 84% of out-of-school children, followed by the Middle East and North Africa and the East Asia and Pacific regions (both at 80\%) (see Figure 2.12).

At the country level, in Cameroon, Eritrea, Indonesia, Iraq, Nicaragua, Sudan (north), Suriname and Venezuela, the proportion of out-of-school children is highest in the poorest 60% of households. For example, 90% of the total number of out-of-school children in Eritrea, Nicaragua and Venezuela come from the poorest 60% of households, although the overall total of out-ofschool children varies widely across the three countries - 7\% in Venezuela, 20\% in Nicaragua, and 37% in Eritrea. Beyond this group of countries with large differences, all other countries surveyed - with the exception of Trinidad and Tobago - show that the poorest 60% of households account for significantly more than 60% of out-of-school children (see Statistical Table A4).

Box 2.3. Case study - Poverty, age and exclusion in Mali

In Mali, 60\% of primary school-age children are not only out of school but have never been in school. Only 29\% of secondary school-age children participate in school (16\% in primary and 13\% in secondary education). Children from the poorest 20% of households rarely participate in the education system. Only 26\% of primary school-age children attend primary school (see Figure 2.13),
and 13% of secondary school-age children also attend primary school (see Statistical Table A8). Yet, a significant proportion of the children in the richest 20% of households are also out of school, either because they have never been in school or because they have dropped out. The richest quintile includes a high proportion of children attending a lower grade for their age (see overage in Figure 2.14).

Figure 2.13. School attendance by household wealth in Mali, 2001

Figure 2.14. Overage and underage children by household wealth in Mali, 2001

[^8]The proportion of children who leave school increases after age 9 among children in the poorest 20% of the population. This increase contributes substantially to the overall number of children out of school. There is a substantial difference in terms of participation rates in secondary education (38%) from the richest households and only 2% from the poorest (see Table 2.3).

In contrast with the other three case studies, Mali faces a more fundamental challenge since only a small proportion of the population currently attends

Source: DHS, 2001

Table 2.3. School attendance by age and household wealth in Mali, 2001

Age group	Household wealth quintile	School-age children (\%)							
		Pre-primary non-standard	Primary	Secondary	Tertiary	Left school	Never in school	$\begin{gathered} \ln \\ \text { school } \end{gathered}$	Out of school
Primary school age	Richest	0.0	70.6	3.5	0.0	1.3	24.6	74.1	25.9
	Poorest	0.0	26.0	0.0	0.0	2.0	72.0	26.0	74.0
Secondary school age	Richest	0.0	18.4	34.6	0.4	9.3	37.3	53.4	46.6
	Poorest	0.0	12.4	1.5	0.0	6.9	79.1	14.0	86.0

Note: More complete descriptions of the patterns of school attendance in India, Indonesia, Mali and Nigeria are included in Statistical Tables A10 to A13.

Mother's education

The educational level of a child's parent is often related to the child's own participation in schooling. The surveys ask whether mothers ever attended school and, if yes, the highest grade and level attained. As presented earlier, the data indicate that, overall, 26% of children of primary school age are identified as out of school; the same surveys

> Primary school-age children with a mother with no education are two times more likely to be out of school than children with a mother with some education. identify 36% of mothers as having "no education". The mothers of children of primary school age who have never completed at least one year of education are classified as "mothers with no education". Primary school-age children whose mothers have no education are more than two times as likely to be out of school as children of mothers with some education (see Statistical Table A3).

In West and Central Africa, more than half (54\%) of the children of mothers with no education are out of school. In relative terms, greater disparities are found in South Asia and Latin America and the Caribbean, where children of mothers with no education are at least 2.5 times more likely to be out of school than those whose mothers have some education (see Figure 2.15). In eight countries, the gap widens to threefold 54\% of children whose mothers have no education are out of school in West and Central Africa. and greater: Venezuela
approach that responds not only to the needs of the population (including marginalised groups) but also to the limitations imposed by current available resources. It may also require a greater involvement of the affected communities to enhance participation and accountability.
school. This is due to lack of access to school or to other factors restricting the ability of the population to enrol and attend primary and secondary school. Dropout and overage rates reflect late entry into school, as well as high repetition rates. Policies and interventions require a comprehensive
(3.7), Guyana (3.4), Eritrea (3.4), India (3.3), and Guinea-Bissau (3.0). In Viet Nam, the Philippines, Iraq and Mongolia, the ratio is 2.8 (for other countries, see Statistical Table A3).

Figure 2.15. Primary school-age children out of school by mother's education and region, 1996-2003
\square Mother has some formal education \square Mother has no formal education

Note: Based on household surveys conducted in 80 countries.
Source: UNICEFIUNESCO Institute for Statistics, Statistical Table A3.
The relative importance of maternal educational attainment depends upon the proportion of mothers with no education as well as the number of their children who are

44\% of primary schoolage children in West and Central Africa are out of school, of which 81% have a mother with no education. out of school. Of all primary school-age children, 52\% have mothers without any education. However, 75\% of out-of-school children have mothers with no education (see Statistical Table A4 and

Figure 2.16). The CEE/CIS region is, once again, an exception: almost all mothers have some education (98\%), and thus, virtually all out-of-school children (99\%) have mothers with education. At the other extreme, in West and Central Africa 44\% of primary school-age children are out of school, and 81% of these children live with mothers with no education. A similar situation is observed in the Middle East and North Africa and South Asia. In Latin America and the Caribbean, almost 8 out of 10 mothers of primary school-age children have some education but are the parents of almost one-half of the out-of-school children in the region.

Figure 2.16. Distribution of out-of-school children by mother's education and region, 1996-2003

Note: Based on household surveys conducted in 80 countries. Source: UNICEFIUNESCO Institute for Statistics, Statistical Table A4.

In some of the countries mentioned earlier Cameroon, India, Iraq, Nicaragua, Peru, Suriname, and Venezuela - there are 20 percentage points or more between the proportion of school-age children who have mothers with no education and their relative share of the total out-of-school number. Thus, in India, where 23% of primary school-age children are out of school, 86% have mothers with no education. A much smaller share (65%) of all children of primary school age have mothers with no education (see Statistical Table A4).

Country-level data show varying degrees of disparity in the proportion of out-of-school children by mother's education and these tend to increase at higher levels of schooling. It is going to take much greater efforts in Latin America and the Caribbean, for example, to reduce the disparities among those countries with relatively low 23\% of primary school-age children in India are out of school, of which 86% have a mother with no education. proportions of children out of school. In contrast, West and Central African countries need not only to reduce the existing disparities but also to increase levels of school participation.

Box 2.4. Case study - Mother's education, age and exclusion in Nigeria

More than 60% of primary school-age children attend school in Nigeria although many are in grades much lower than prescribed for their age (Statistical Table A9 and Figure 2.17). Almost twothirds of children of secondary school age are in school, yet one-half of them are still attending
primary school and two-thirds are overage for their grade. It can be noted that the overage phenomenon cuts across socio-economic groups. Children are in lower grades for their age when they start school late and/or repeat grades.

Figure 2.17. Overage and underage children and youth by sex in Nigeria, 2003

As shown, children whose mothers have attained some education tend to participate more in school, both at primary and secondary levels - and Nigeria is no exception (see Statistical Table A13). Among primary school-age children, more than 80% who have a mother with some education are in school, compared to only 46% among children whose mother has no education. For children of secondary school age, the corresponding values are 94% and 61%. However, around one-half of the children in both groups still attend primary school, leaving only 46% of children of mothers with some formal education and 10% of children of mothers with no
education attending secondary education (Figures 2.18 and 2.19).

Almost all of the children in Nigeria who are older than primary school age but not in primary school have never been in school. Less than 1% of the out-of-school population has dropped out. This is remarkable given the high proportion of children who are in lower grades for their age, because being overage can lead to early school leaving. At the same time, some of the children who have never been in school may still start school. Only 8\% of the children of secondary school age drop out, while 23% have never attended school.

Figure 2.18. School attendance by mother's education in Nigeria, 2003

Figure 2.19. Overage and underage children by mother's education in Nigeria, 2003

The findings make it clear that addressing the overage problem requires that a greater share of children start school at the official entry age and that efforts be made to reduce existing repetition rates, which relies on increasing school readiness for primary education (see Table 2.4).

Table 2.4. School attendance by age and mother's education level in Nigeria, 2003

Age group	Mother's education level	School-age children (\%)							
		Pre-primary non-standard	Primary	Secondary	Tertiary	Left school	Never in school	$\begin{gathered} \text { In } \\ \text { school } \end{gathered}$	Out of school
Primary school age	Mother ed.	7.1	78.6	2.8	0.0	0.8	17.8	81.4	18.6
	Mother no ed.	2.4	45.1	0.7	0.1	0.7	53.4	45.9	54.1
Secondary school age	Mother ed.	0.2	48.5	45.7	0.0	2.2	3.6	94.2	5.8
	Mother no ed.	0.0	50.4	10.5	0.0	4.0	35.1	60.9	39.1

Note: A more complete description of the patterns of school attendance in India, Indonesia, Mali and Nigeria is included in Statistical Tables A10 to A13.

Source: DHS, 2003

Multivariate analysis

A multivariate regression analysis was used to identify the net effects on the likelihood of school attendance for each of the five variables. In the model, the dependent variable is current school attendance, and the independent variables are age, sex, mother's education, household wealth and place of residence. The model was tested with a logistic regression and the results are summarised in Table 2.5. Complete results for all countries are provided in Statistical Table A5, notably:

- Household wealth, mother's education and child's age are significant and positive in 64 of the 68 countries, confirming the descriptive results presented in this chapter.
- Age did not significantly affect a child's probability of being out of school in Burkina Faso, Indonesia, Iraq and Kazakhstan.
- Similarly, low household wealth was not a significant factor in school attendance in three CIS countries (Azerbaijan, Kazakhstan and Tajikistan). This result can also be explained by the fact that these three countries have out-ofschool rates far below the average for the 80 countries included in this analysis ($9 \%, 2 \%$ and 19% respectively).
- Finally, mother's education was not significantly associated with the probability of being out of school in Armenia, Azerbaijan, Kazakhstan, Tajikistan and Uzbekistan - largely because almost all mothers in these CIS countries have at least some education.

Interestingly, sex was not significantly associated with the probability of being out of school in 29 of the 68 countries (43%) for which data were analysed.

Backround variables	Number of countries	Odds ratio		
		$\begin{gathered} >1 \text { and } \\ \text { significant* } \end{gathered}$	$\begin{gathered} <1 \text { and } \\ \text { significant* } \end{gathered}$	Not significant
Age	68	64	-	4
Male	68	30	9	29
Urban	68	24	7	37
Richest wealth quintile	68	64	1	3
Mother has formal education	68	63	-	5

Note: * Significant at 5\% level minimum.
Source: UNICEFIUNESCO Institute for Statistics, Statistical Table A5

2.3 Profiles of children in and out of school

The purpose of this section is to provide a more detailed description of the characteristics of children out of school using survey data for India, Indonesia, Mali and Nigeria. By identifying the characteristics of children out of school in as much detail as possible, this report hopes to point the way to valuable information for policy-makers working to achieve the goal of universal primary education.

The four case studies are:

- India: This country has the largest primary school-age population in the world and also the largest number of children out of school.
- Indonesia: The world's fourth-most populous country reports that nearly all children attend school at some point.
- Mali: A country with a low attendance rate that reflects the situation in many African countries.
- Nigeria: Africa's most populous country and ninth-largest in the world, it has many out-ofschool children and overage children in school.

The three groups of children are identified as:

- Children of primary school age: The baseline reference group.
- Children in school: A comparison between this group and the out-of-school group can highlight key differences.
- Children out of school: Their characteristics are of great interest for policy-makers.

The analytical template

For each country, school attendance patterns are explained by dividing the three groups of children into smaller groups according to their characteristics and those of their households. The level of disaggregation depends on which data were collected in each country: for example, data on child labour were collected in India and Mali, but not in Indonesia and Nigeria. Thus, labour-market participation can be examined as a factor in school attendance in two of the case countries but not in the other two.

The descriptive analysis is combined with a regression analysis. In the regression models, school attendance is explained with a set of variables that describe the child and the household, again depending on the availability of data within each country. The results show which factors increase or decrease the likelihood of school attendance. They also serve as a test of statistical significance for disparities that are observed at the descriptive level.

Box 2.5. Regression analysis of school attendance

The regression analysis determines whether individual and household characteristics have a statistically significant effect on school attendance, whether this effect is positive or negative, and its magnitude. In the model, school attendance (yes or no) is the dependent variable that is tested on a set of independent variables that varies from country to country. School attendance is explained with these variables, depending on which data were collected in the survey for each country:

- age of the child
- sex of the child
- place of residence (urban or rural)
- household wealth
- education of mother, father and household head
- sex of the household head
- orphan status of the child (one or both parents dead)
- religion of the household head (only India)
- membership of the household head in a scheduled caste or tribe (only India)
- native language of the survey respondent (only Nigeria)
- household composition (number of household members aged less
than 5 years, 5 to 59 years, 60 years or older)
- labour status of the child (only India and Mali)
- sub-national region or state

Except for age and number of household members, all variables are dichotomous and take the value 0 or 1 . The sample for each country consists of all primary school-age children in the survey data. The sample size ranges from 5,917 children in Nigeria to 70,466 in India.

The results of a probit regression for the four countries are provided in Statistical Tables A14 and A15. For each variable, the marginal effect is shown, i.e. the increase or decrease of the likelihood of school attendance, measured in percentage points, that follows a change from 0 to 1 in the independent variable. In the case of continuous variables (age, number of household members), the marginal effect is measured at the mean of the independent variable. Statistical significance is indicated at the 5% and 1% levels. As an example, the marginal effect 0.059 for the variable "male" in India means that boys are, on average, 5.9 percentage points more likely than girls to be in school.

India

Data on Indian children of primary school age (6 to 10 years) who are in school or out of school are presented in Statistical Table A10. The table shows the distribution of these children according to age and sex, characteristics of parents and household head, place of residence, religion and caste or tribe of the household head, household wealth, child labour status, and sub-national region. The regression results for a sample of 70,466 children are shown in Statistical Table A14. The average attendance rate in the sample is 82.5%.

Age

Statistical Table A10 shows that 6-year-old children are more likely to be out of school than in, a sign of late entry into the education system. The regression results in Statistical Table A14 confirm that the likelihood of school attendance increases with age.

Sex

Of all children of primary school age in the sample, 49% are girls and 51% are boys. By comparison, only 46% of pupils are female and 59% of out-of-

In India, the Iikelihood of boys to be in school is 5.9 percentage points higher than for girls. school children are girls. The regression confirms that these differences are statistically significant: the likelihood of boys to be in school is 5.9 percentage points above that of girls at the same age. These numbers demonstrate the degree to which girls are disadvantaged in Indian society.

Place of residence

The shares of urban and rural children in the sample overall are 23% and 77%, respectively. Children out of school are disproportionately from rural households: their share is 87%. However, in a surprising result, the regression analysis shows that rural children are as likely to be in school as urban children, all other variables being equal. The disparity in school attendance between urban and rural areas that is observed at the descriptive level can be explained by other factors, such as household wealth or the parents' education.

Household wealth

Household wealth is a strong determinant of whether or not children go to school and for how
long. Children from the poorest 20\% of all households represent 23% of all primary schoolage children in the sample. However, they make up 37\% of out-of-school children. As household wealth increases, there is a clear positive association with school attendance.

15\% of all primary

 school-age children live in the richest quintile in India and represent only 3.6\% of out-ofschool children. Children from the richest quintile represent 15\% of all primary school-age children but only 3.6% of out-of-school children.The regression confirms the positive effect of household wealth on school attendance. This effect can be observed at all levels of wealth above the bottom 20\% of households. Among children from the richest households, the probability of school attendance is increased by 7.7 percentage points, compared to the poorest quintile.

Orphans

Among children in the sample, 2\% have lost their mother and 2.9% their father. Among children out of school, 3.3% have no mother and 3.8\% no father. There is not much variation depending on presence of the mother or father in the household, although children out of school live more frequently in a household without their mother. The regression shows that having lost one or both parents lowers the likelihood of school attendance by 3.6 percentage points.

Parental education

The educational attainment of the parents and the household head, measured by the highest level of school attended, has a substantial effect on the out-of-school status of children. In the sample, 67\% of all primary school-age children have mothers without any formal education (primary, secondary or tertiary). In contrast, 93\% of out-of-school children have mothers without formal education.

The pattern relating to the

93\% of out-ofschool children in the sample have a mother without formal education. education of fathers and household heads is similar. If the father or household head has formal education, children are more likely to be in school and the likelihood increases with the level of education of the parents or household head. Literacy data support these results: most children who are out of school have parents who report that they are illiterate, which means in the
case of India that they are unable to read and write a simple sentence. This demonstrates the intergenerational effect of education: parents who have

An educated mother
has a greater effect on school attendance than an educated father. attended school are more likely to send their own children to school.

The regression for India confirms these findings. Formal education of the parents and the household head increases the likelihood of the child's school attendance. An educated mother has a greater positive effect on school attendance than an educated father or household head. The marginal effect of 7.3 points for mothers with a primary education indicates that the investment in girls' education carries positive effects into the future because formally educated mothers are more likely to send their own children to school.

Other characteristics of parents or household head

The sex of the household head also affects school attendance. If the household head is male, the children are somewhat more at risk of not being in school. This finding is supported by the regression analysis.

The religion of the household head appears to have a small effect on school attendance

The religion of the household head has no significant effect on a child's school attendance in India. when considered on its own (Statistical Table A10); however, this conclusion is not supported by the multivariate regression results. Whether the household head is Hindu, Muslim or adheres to another religion, it has no statistically significant effect on a child's school attendance.

Membership in a scheduled caste or tribe is negatively correlated with school attendance. ${ }^{3}$ In the survey sample, 20% of all primary school-age children were in households whose head belongs to a scheduled caste. However, these children make up 26% of children out of school. Children from scheduled tribes are even less likely to be in school.

This group constitutes 8.5% of all primary school-age children but 14% of children out of school. The regression analysis confirms a decreased likelihood of school attendance for members of a scheduled tribe. In contrast, no statistically significant difference in school attendance could be observed for children from scheduled castes, relative to the remaining population, which means that their lower participation in the education system may be explained by other factors, such as poverty.

Household composition

Children from households with elderly members (60 years or older) are more likely to attend school although the effect is small. The explanation could be that elderly household members perform tasks in the household, which in turn gives children more time for school-related activities. It is also possible that these households have stronger family ties and an environment which encourages children to attend school. In contrast, having more young members (below 5 years of age) in the household lowers the school attendance rate of children between 6 and 10 years, according to the regression results.

Child labour

The MICS survey in India collected data on economic activity and domestic work performed by children. Those involved in child labour are much less likely to be in school than children who do not work. ${ }^{4}$ Of all primary school-age children

21\% of out-ofschool children work in India. surveyed, 10% were engaged in labour, which means that they are economically active or do household work for 28 or more hours per week. Among out-of-school children, 21% work.

The magnitude of the marginal effect of child labour on school attendance is substantial (16.9%). Thus, there is a trade-off between child labour and school attendance, two activities that compete for a child's time. The competition for children's resources between immediate economic gains and longerterm individual and social development is notable in India and in many other countries.

[^9]
Sub-national districts

In analysing the distribution of children and school status among India's 35 states and union territories, the most striking result is that the state of Bihar accounts for only 13% of children in the sample, but 26\% of all Indian children out of school. Orissa, Uttar Pradesh and Madhya Pradesh also have a high share of children out of school relative to their total share of the primary school-age population. In contrast, Kerala, which accounts for 22% of all children in the sample, has virtually no children who are out of school.

A regression analysis was conducted that set Uttar Pradesh, the largest state in the Indian union, as the reference state. States with fewer than 100 data observations were combined in a category called "small states". Compared to Uttar Pradesh, children in several other states are more likely to be in school. The biggest positive marginal effects were found for Tamil Nadu (one of the most industrialised states; marginal effect 10.1\%), Himachal Pradesh (8.9%), and Kerala (a state which emphasises social welfare policies; 8.7%). In contrast, the only state with a negative and statistically significant marginal effect is Bihar. Children in Bihar are 9.1% less likely to attend school than children from Uttar Pradesh, which may be a symptom of an education system in crisis. In summary, those facing a higher risk of being out of school are girls, orphans, child labourers, children living in households without formally educated parents or household heads, children in maleheaded households, children from poorer households, members of scheduled tribes, and children from Bihar.

Indonesia

As reported earlier, Indonesia has very high primary attendance rates. The present analysis aims to shed light on how the "last five percent" may be reached by the educational system. It should be noted that, compared to the MICS survey in India, the DHS survey data in Indonesia provide fewer details. For example, no data on literacy, religion or labour status of children were collected.

Statistical Table A11 shows descriptive statistics for primary school-age children, in and out of school. The regression results for Indonesia are shown in

Statistical Table A14. The total sample consists of 19,305 children between the ages of 7 and 12 years, with an average attendance rate of 95%.

Age

Children aged 7 or 12 years are more likely to be out of school, but according to the regression results, age has no statistically significant effect on school attendance. This means that all children of primary school age are equally likely to be in school.

Sex
In the overall sample, 48\% of primary school-age children who are out of school are female and 52% are male. In contrast to most other countries surveyed, boys in Indonesia appear to experience a gender disadvantage and account for a higher share of children who are out of school (57\%). However, the regression analysis shows this disparity to be statistically insignificant, meaning that differences in school attendance are not due to the sex of the child.

Place of residence

Similar to most other countries

Boys in Indonesia experience gender disadvantage and account for 57% of children out of school.

 surveyed, children living in rural areas of Indonesia are more likely to be out of school than those from urban areas (see Figure 2.9.) The regression analysis does not lend support to this pattern as no statistically significant difference in school attendance between urban and rural areas is observed.
Household wealth

Household wealth in Indonesia has a strong impact on school attendance. Children from the poorest quintile of all households are more likely to be out of school. Overall, children from the top three quintiles (60%) of all households are less likely to be out of school than those from the bottom two quintiles (40%). This pattern is confirmed by the regression analysis. Compared to children from the poorest quintile of households, those living in the upper four quintiles have higher attendance rates. In the top three quintiles, the school attendance rate is 3 to 4 percentage points higher than in the lowest quintile.

Orphans

Orphans, i.e. children without a mother or father or whose parents live in another household, are more likely to be out of school than other children. The regression confirms that orphans have an increased likelihood of being out of school compared to children with at least one living parent.

Parental education

The education of the parents and the household head is another determinant of school attendance.

24\% of Indonesian children who are out of school have a mother with no education. In the sample, 9.6\% of primary school-age children have a mother without formal education. However, 24\% of children out of school have a mother with no formal education. The education of the father or the household head has a similar effect on a child's school attendance.

The regression analysis confirms the findings from the descriptive analysis. If a mother has attended primary or secondary school, her children are more likely to be in school than those of a mother without formal education. Compared to India, the effect of the mother's education is small, with a marginal effect of 1.5 percentage points for primary education and 2.8 percentage points for secondary education. The education of the father appears to have no effect on the likelihood of a child attending school.

If the household head has at least primary education, children are more likely to be in school. If the household head has secondary or tertiary education, the same effect is observed.

Other characteristics of parents or household head
In contrast to India, the gender of the household head has no effect on school attendance in Indonesia.

Household composition

Household composition has the same effect on school attendance as in India. A household with a higher number of children under age 5 reduces the likelihood that older siblings attend school, perhaps because they are charged with childcare or other domestic tasks. On the other hand, in a household with a higher number of household members over the age of 60, the likelihood that children attend
school is increased, indicating that elders in an intergenerational household may take up domestic tasks that might otherwise be carried out by school-age children.

Sub-national districts

A sub-national analysis shows that residents of Bali

The likelihood of a child attending school
is decreased with a
higher number of children under age 5 in the household. and Nusa Tenggara, Kalimantan, and Sulawesi are at a disadvantage compared to residents of Sumatra and Java. The former are more likely to be out of school and to have never attended school, but the effect is smaller than those of household wealth and parental education. The regression results confirm that, compared to other regions of Indonesia, children living on Sulawesi have significantly lower attendance rates.

In summary, there is an increased probability of being out of school for children with a mother or household head without a formal education, children in households with a relatively large number of young children, children from the poorest part of the population, orphans, and children from Sulawesi.

Mali

Data on out-of-school children from a DHS survey in Mali are presented in Statistical Table A12. The regression results are listed in Statistical Table A15. The Mali survey sample covered 12,184 children of official primary school age (7 to 12 years) with an average attendance rate of 39%. The analysis covers the same variables as in Indonesia, with the addition of child labour.

Age

As in India, older children are more likely to be in school in Mali, which is a sign of late entry into the education system.

Sex
In the overall sample, 51\% of school-age children are female and 49% are male. Girls are more likely to be disadvantaged: they account for 56% of out-ofschool children. The regression results confirm that boys have

In Mali, girls account for 56\% of children out of school. a much higher attendance rate. The likelihood of attending school for boys is 14.3 percentage points higher than for girls.

Place of residence

Rural children are more likely to be out of school than those from urban areas. In the survey sample, 77% of all children live in rural areas but they account for 87% of those out of school. In India and Indonesia, the disparities between urban and rural areas receded when other factors were taken into account in the regression analysis. In Mali, however, the rural disadvantage remains, which means it exists independent from household wealth or other determinants of school attendance. Urban children are 10.2 percentage points more likely to be in school than rural children.

Household wealth

Household wealth has a strong impact on school attendance in Mali. Children from the lower three quintiles (60%) of households are more likely to be out of school than children from the richest household quintile.

The regression analysis yields a much larger effect of household wealth on school attendance than in India or Indonesia. This is a symptom of the inequality in the wealth distribution. Children from the bottom two quintiles (40%) of the population have the same likelihood of being out of school. In contrast, children from the richest quintile are 23 percentage points more likely to be in school than those from the poorest quintile.

Orphans

In Mali, orphans are not more likely to be out of school, which distinguishes this country from India and Indonesia.

Parental education

The educational attainment of the parents and the household head has a significant effect on the school attendance of children. Most children aged 7 to 12 years in Mali (86\%) have a mother with no formal education. Among children out of school, 93\% have a mother with no formal education. The effect of educational attainment of the father or the household head is similar.

The role of parental educational attainment is reflected in the regression analysis. Compared to children of a mother with no education, those whose mother had attended primary school are 12.3 percentage points more likely to be in school. If the mother has secondary or tertiary education, the likelihood of school attendance is increased by a staggering 42.7 percentage points. By contrast, the
effects from a father's educational attainment are observable only at the secondary education level and it is still lower than the impact of the mother's educational attainment. A household head with formal education also has a strong positive effect on school attendance.

Other characteristics of parents or household head

The gender of the household head has no effect on a child's likelihood to attend school.

Household composition

The composition of the household does not appear to be a significant determinant of school attendance.

Child labour

The DHS survey in Mali collected data on working children. The definition of child labour is the same as that used in the India MICS survey. In the case of Mali, two in five primary school-age children (39\%) are engaged in child labour. Among children out of school, 45% are involved in child labour. The marginal effect of child labour on the likelihood of school attendance is -11.6 , meaning that working children are almost 12 percentage points less likely to be in school than their non-working peers.

Sub-national districts

An analysis of school attendance by the eight administrative regions in Mali shows that children in the Kayes, Segou, Mopti and Tombouctou regions appear more likely to be out of school than children in other regions (see Statistical Table A12). In the regression analysis, school attendance in Sikasso, which has the sample's largest number of observations, is compared with the remaining regions. Children from Koulikoro are found to have higher attendance rates, whereas children from Tombouctou and Mopti are less likely to be in school.

In summary, there is an increased probability of being out of school for younger children, girls, child labourers, children with parents or household heads without formal education, children from the poorest two- to three-fifths of the population, rural residents, and children living in certain

45\% of out-of-school children in Mali are involved in child labour.

Nigeria

Nigeria is the most populous country in Africa and one of its most diverse. The DHS survey in Nigeria provides similar data to the Indonesia and Mali surveys, with additional information on the respondent's native language but without data on child labour. The official primary school age is between 6 to 11 years (see Statistical Table A13). The sample for the regression analysis contains 5,917 primary school-age children, with an average attendance rate of 66.3%. The results of the regression are shown in Statistical Table A15.

Age

In Nigeria, children aged 6 to 7 years are more likely to be out of school. The regression confirms that the likelihood of primary school attendance increases with age, which is a sign of delayed entry.

Sex

In the overall sample, 49% of children are female and 51% are male. However, girls account for 56%

In Nigeria, girls account for 56\% of out-of-school children. of children out of school. Compared to girls, boys have a higher likelihood of school attendance with a marginal effect of 12.0 percentage points. Girls are clearly at a disadvantage in Nigeria when it comes to primary school attendance.

Place of residence

Rural children are more likely to be out of school or to have never attended than those from urban areas. In Nigeria, 68\% of primary school-age children live in rural areas, but these children account for 80% of those who are out of school. However, this disparity disappears once other factors are considered. The regression analysis finds that there is no statistically significant difference in school attendance based solely on place of residence.

Household wealth

Higher levels of household wealth are associated with an increased probability of school attendance. Children from the poorest two quintiles of households are more likely to be out of school, as Statistical Table A13 shows. The regression analysis
supports this finding: children from the poorest quintile of Nigerian households have a significantly lower likelihood of attending school than children from the remaining 80% of households. Compared to the poorest quintile, the likelihood of school attendance is 25.6 percentage points higher for children from the richest quintile.

Orphans

There is no difference in school attendance between orphans and children who have at least one living parent. Living apart from one's parents also appears to have a limited effect on school attendance, which may be an indicator of the strong role of the extended family in Nigeria.

Parental education

The educational attainment of the parents and the household head is a strong determinant of school attendance. Of all children of primary school age, 57% have a mother without formal education. However, 86% of children out of school have a mother that lacks formal education. The results for educational attainment of the father or household head are similar. If the parents or the household head report that they are literate, children have an increased likelihood of being in school.

The regression analysis shows that the likelihood of school attendance rises by 6.7 percentage points when the mother has primary education and by 13.7 points when the mother has secondary or tertiary education. The respective values for the father's education are 10.0 points and 10.7 points. Nigeria thus differs from India, Indonesia and Mali, where the mother's education has a stronger positive effect on school attendance than the father's education. An effect of the educational level of the household head is observed only when the level is secondary or higher. In that case, children are 9.9 percentage points more likely to be in school than children from households headed by persons with no education.

Other characteristics of parents or household head

Being in a female-headed household has a positive effect on school attendance. In the sample, 12\% of children live in a household headed by a woman, but only 5.9% of children out of school live with a female household head. The regression confirms that children in male-headed households are

Nigerian children in female-headed households are less likely to be out of school.
significantly less likely to be in school than children from female-headed households. This is also observed in India but with a smaller marginal effect than in Nigeria.

In Nigeria, the survey collected data on the native language of the survey respondent, which can be used to examine differences between ethnic groups. Almost one in three children in the survey sample (31%) live in households where Hausa is the native language. The Hausa people live in the predominantly Muslim northern part of Nigeria. However, these children account for more than onehalf of the children (54\%) out of school. The regression finds that children from Hausa households are 9.8 percentage points less likely to attend school than children from households where other languages predominate. In contrast, Children living in households where Yoruba and Igbo are spoken have higher attendance rates.

Household composition

The age composition of the household has no effect on school attendance in Nigeria.

Sub-national districts

The DHS survey in Nigeria was not designed to be representative at the state level. Instead results are available for six larger geographic regions. Data in Statistical Table A13 and in the regression output in Statistical Table A15 show that children in the North East and North West regions are more likely to be out of school than those in other regions. This matches the results by native language of the survey respondent.

However, some caution should be exercised when interpreting this result. In the northern part of Nigeria, more children are out of school than in the south. But, due to limitations in the data, it is not possible to establish whether children in the north are entirely out of school or whether they attend Islamic schools, which are not counted as formal education in the context of this study.

In summary, there is an increased probability of being out of school for younger children, girls, children with parents or household head without formal education, children from male-headed households, children from poor households, and children living in northern Nigeria.

Conclusion

The preceding analysis described the situation in four countries that differ widely in their geography, demographics, economies and systems of education. Some determinants of school attendance are specific to individual countries, but other characteristics of out-of-school children are common to India, Indonesia, Mali and Nigeria.

Household wealth is always strongly related to school attendance, with children from the poorest households more likely to be out of school than the rest of the population. This underlines the importance of poverty reduction within policies with the goal of education for all. Child labour, commonly a symptom of poverty in a household, is a related phenomenon that interferes with primary school attendance, progression and completion.

The strong effect of the parents' or household head's level of education illustrates the intergenerational effects of investment in education. The effect is particularly pronounced for children of educated mothers, which emphasises the importance of educating girls. Girls are not always disadvantaged but gender gaps remain.

Intergenerational effects

 of investment in education are proven by the strong effects of the parents' level of education on the child's attendance in school.The effect of other factors on school attendance having lost one or both parents, living in a maleheaded household, the number and age of other household members - varies from country to country. In spite of shared characteristics among out-of-school children, policies and interventions must be tailored to nationally-specific contexts.

Postscript: Next steps and a measurement agenda

In order to monitor changes in the number of out-of-school children, reliable time series of the number of out-of-school children are needed. Global and regional estimates are required on an annual basis, not only for the future, but also for past years.

However, household-based measures of school participation from sample surveys are collected on an infrequent basis, typically every three to five years. This is a major issue since the UIS/UNICEF joint methodology survey-based estimates may have a significant impact on regional and global estimates. A strong research programme is needed to identify approaches that might be taken. The statistical properties of the possible approaches need to be evaluated - perhaps through a combination of statistical theory and data analysis. Given the pattern of data availability for administrative and household surveys, some sort of composite approach may be needed for estimating time series and producing estimates for the most recent year.

Yet, developing new methodologies to produce time series data based on a combination of different data sources will not be sufficient to target the problem of inconsistent data sources and estimates. A strategy to develop a better understanding of data quality issues and how to resolve them is needed. This will have an important impact not only on estimates of out-of-school children but also on other education statistics based on administrative data.

A strategy must lead to a better understanding of systematic bias, as well as help to identify country-specific problems related to either data source. Therefore the work must have two directions.

First, it must include a theoretical framework for assessing the impact of systematic errors in the components of each measure. This will lead to a better understanding of conceptual differences between enrolment and attendance data and the impact of the timing of surveys and data collections.

Second, further analysis of national data should be undertaken when the two estimates are inconsistent and this should focus on the quality of the estimates and the underlying data, such as population estimates. Analysis should be undertaken especially to explore the quality of age breakdowns of administrative enrolment counts to identify the wrongful inclusion of children who are not of primary age. This work should focus on countries having the biggest impact on global and regional estimates. Yet, the review of country cases should be used to build up a portfolio of 'case histories' that should be reviewed periodically to ensure that generally emerging lessons are applied to all countries.

For the longer term, the strategy is to work with more countries to develop their administrative systems so they can provide annual information conforming to the concepts and definitions of international data collections. In addition, independent household-based measures of school participation should also be further developed, even in countries with reliable administrative systems. Household surveys allow for the assessment of administrative data, but more importantly, they provide a perspective on children who are out of school that administrative data do not reflect.

References

Bangladesh Bureau of Educational Information and Statistics (BANBEIS) (2002), "Statistical profile on education in Bangladesh", BANBEIS Publication No. 350, Dhaka: BANBEIS.

Bangladesh Institute of Development Studies (BIDS) (1998), Regional poverty profile and development indicators - A GIS-based analysis micro impacts of macroeconomic and adjustment policies in Bangladesh", Technical Paper No. 8 accessed at http://www.mdgbangla.org/mdg_issues/primary_education/primary_education_data_bids.htm.

Campaign for Popular Education (2002), Education Watch 2001 - Renewed Hope Daunting Challenges, Dhaka: The University Press Limited.

FASAF, UNESCO Institute for Statistics, UNICEF, USAID, and ORC Macro (2004), Guide to the Analysis and Use of Household Survey and Census Education Data, Montreal: UIS.

Filmer, Deon and Lant H. Pritchett (2001), "Estimating wealth effects without expenditure data - or tears: An application to educational enrollments in states of India", Demography 38 (1).

Langsten and Hassan (forthcoming), "Monitoring education for all: an integrated structure to assess progress and assist policy-making", Social Research Centre, American University in Cairo.

Loaiza, Edilberto (2004), "Does data quality explain the differences in the current global estimates for mortality and education?", New York: UNICEF.

Mehta, A.C. (2004), Elementary Education in India - Analytical Report 2003, New Delhi: NIEPA.

MICS (1999), MICS Draft Report from Philippines, New York: UNICEF, accessed at http://www.childinfo.org/MICS2/newreports/philippines/philippinestable.pdf.

Ministère de l'Enseignement Pre-Universitaire et de l'Education Civique (MEPU EC) (2002), Annuaire Statistique Enseignement Primaire - Année Scolaire 2001 - 2002, Conakry: MEPU EC.

UN (2003), Indicators for Monitoring the Millennium Development Goals, New York: United Nations.

UNESCO (2000), The Dakar Framework for Action, Paris: UNESCO.
UNESCO (2002), Is the World on Track? EFA Global Monitoring Report, Paris: UNESCO.
UNESCO (2003), Gender and Education for All: The Leap to Equality, EFA Global Monitoring Report. Paris: UNESCO.

UNICEF (2004), The State of the World's Children 2004, New York: UNICEF.
Wils, A. (2004), "Late entrants leave school earlier: evidence from Mozambique", International Review of Education. Volume 50, No. 1.

World Bank, Living Standards Measurement Study (LSMS), accessed at http://www.worldbank.org/lsms/.

ANNEX 1. The methodology for global and regional estimates

A. Methodology for the calculation of primary schoolage children out of school

Calculation based on administrative data

The number of out-of-school children can be considered the residual between the number of pupils in a given age range and the number of children in the same age range.

Let s_{c} be the starting age of primary education and e_{c} the last age year of primary education in country c. Further let Pop(age1,age2) $c_{, g}$ be the population of gender g in the age range from age1 to age2 in c.

The primary school-age population is calculated as:

$$
\text { SchoolPop }_{c, M+F}=\operatorname{Pop}\left(s_{c}, e_{c}\right)_{c, M+F}
$$

Let Pupil(age1,age2) $)_{c, g, 1}$ be the number of pupils of gender g aged age 1 to age2 at level of education I. The number of pupils of primary school age in primary (ISCED 1) or secondary education is (ISCED2 and 3) is:

$$
\text { Pupil }\left(s_{c}, e_{c}\right)_{c, M+F, I \text { ICED 123 }}=\operatorname{Pupil}\left(s_{c}, \mathrm{e}_{c}\right)_{c, M+F, I I C E D 1}+\operatorname{Pupil}\left(s_{c}, e_{c}\right)_{c, M+F, I S C E D 23}
$$

The rate of children, boys and girls, out of primary school is:

$$
\text { ROOPS }_{C, M+F}=1-\left(\text { Pupil }\left(s_{c}, e_{c}\right)_{c, M+F, I S C E D 123} / \text { SchoolPop }_{C, M+F}\right)
$$

The rate of children, boys and girls, out of primary school but in pre-primary education (ISCED 0) is:

$$
\text { RPPS }_{c, M+F}=\left(\operatorname{Pupil}\left(s_{c}, e_{c}\right)_{c, M+F, I S C E D O} / \text { SchoolPop }_{c, M+F}\right)
$$

Before calculating the total number of out-of-school children, the underlying data may need to be adjusted. Using administrative data, the number of out-of-school children is based on two different data sources. The number of students is obtained from the UIS Annual Education Survey and the population size is taken from the database of the UN Population Division (UNPD). The data from the two sources do not match perfectly, e.g. the reference date for the age and the reference period for the data are not identical - population data typically use an end of year or beginning of year reference, while for many countries enrolment data refer to the beginning of the school year (e.g. early September). This can lead to mismatches between the two sources and it can even mean that, for countries with high participation rates, the total number of primary school-age pupils in pre-primary to secondary education combined exceeds the number of children for that age group as reported by the UNPD population data.

If the participation rate of children exceeds 100% for either girls or boys, the rates for both sexes and the total are adjusted. The rate for the total and its components by sex will be below 100%. In other words, if:

Pupil $\left(s_{c}, e_{c}\right)_{c}$, Male,ISCED0123 $>$ SchoolPop $_{c}$, Male
or Pupil $\left(s_{c}, e_{c}\right)_{c}$, Female,ISCED0123 $>$ SchoolPop $_{c}$, Female
then the following adjustment factor is calculated:
$\operatorname{Adj}_{\mathrm{c}}=$ maximum of $\left[\operatorname{Pupil}\left(\mathrm{s}_{\mathrm{c}}, \mathrm{e}_{\mathrm{c}}\right)_{c, \text { Male,ISCED0123 }}\right.$
$/ S_{c h o o l P o p_{c, ~ M a l e ~}}$ and Pupil($\left.s_{c}, e_{c}\right)_{c, \text { Female,ISCED0123 }}$
/SchoolPop ${ }_{c, \text {, Female }}$]
The factor is applied to both sexes and the total for all rates is calculated as:

```
    ROOPS \(_{c, M+F}=1-\left(\operatorname{Pupil}\left(s_{c}, e_{c}\right)_{c, ~ M+F, I S C E D 123}\right.\)
\(/\) SchoolPop \(_{\mathrm{c}, \mathrm{M}+\mathrm{F}}\) )/Adjc
    RPPS \(_{c, M+\mathrm{F}}=\left(\right.\) Pupil \(\left(\mathrm{s}_{\mathrm{c}}, \mathrm{e}_{\mathrm{c}}\right)_{\mathrm{c}, \mathrm{M}+\mathrm{F}, I \mathrm{SCEDO}}\)
/ SchoolPop \({ }_{C, M+F}\) )/Adjc
```

Following the adjustment, the number of children out of school is calculated as:

$$
\text { NOOPS }_{\mathrm{C}, \mathrm{M}+\mathrm{F}}=\text { ROOPS }_{\mathrm{C}, \mathrm{M}+\mathrm{F}} * \text { SchoolPop }_{\mathrm{C}, \mathrm{M}+\mathrm{F}}
$$

It should be noted that the number of pupils based on administrative data can be subject to error. As well, the population count of primary school-age children is subject to uncertainty which increases during the period between censuses. The annual estimates are generally projections from the most recent census data subject to expected changes in fertility, mortality and migration. Given that censuses are conducted about every 10 years, these initial assumptions about fertility, mortality and migration rates can have a significant impact on the population estimates for primary school-age children over the course of time.

Another source of error results from the estimation of population data for single years of age. For example, UNPD splits population data by five-year age groups into single-year age groups using the Sprague method. The magnitude of uncertainty related to population estimates is reflected by comparing the size of the estimated school-age population for the year 2001 using two (2000 and the 2002) revisions of the United Nations World Population Prospects. For the median country, the school-age population changed by 1%. For one out of four countries, the differences were more than 3%.

This relatively small error associated with the population data can have a great impact on the out-of-school children estimate, as shown in the following example.

The estimate of out-of-school children based on administrative data is the difference between the population estimate (X) and the enrolled pupil count (Y). Relatively small differences between two large, independently derived numbers can be notoriously uncertain in relation to the figure being estimated. Even if one assumed that the two large numbers were not biased but simply subject to random error, the variance of the difference may be relatively large [V(X$\mathrm{Y})=\mathrm{V}(\mathrm{X})+\mathrm{V}(\mathrm{Y})$ under independent errors]. For example, suppose a country has 1 million primary school-age children and 800,000 children in school, then the out-of-school count would be 200,000, or 20%. If both large numbers are plus or minus 20,000 (i.e. standard error $=10,000$), the standard error of the difference is 15,000 and a 95% confidence interval is 200,000 plus or minus 30,000 .

Another source of error results from differences between the month in which the school year starts (or the month in which age cut-offs for school entry apply) and the reference month to which the age of pupils refers. This error typically leads to an overstatement of the number of out-of-school children and late entrants.

For example, children in Germany are expected to start primary school in the year in which they have reached the age of 6 years on or before 1 July. Enrolment numbers are counted at the beginning of the school year, in early October, but the ages of pupils are reported as of the end of the year (31 December). Approximately 50 per cent of children who were 6-years-old on 31 December were only aged 5 on the cutoff date of 1 July and therefore were not required to enroll in primary school that year. These children are therefore wrongly classified as being out of school. However, the data collection instrument jointly used by UNESCO, OECD and EUROSTAT for the collection of education statistics (UOE) requires that countries report student ages as of 31 December and not in relation to an enrolment cut-off or the beginning of the school year. The same instructions apply to countries participating in the UIS World Education Indicators Project (WEI). Data for countries implementing the UOENWEI data collection according to the international definitions are potentially affected by this error. For this reason, data for are Austria, Chile, Czech Republic, Germany, Latvia, Slovakia and Uruguay not presented in this report.

Calculation based on household survey data

The number of children out of school is the share of out-of-school children of primary school age based on a nationally-representative sample survey, multiplied by the absolute population of primary school age in a country. The questions used to identify the share of children out of school depend on the household survey.

MICS surveys contain an education module with the following questions for all children aged 5 to 17 years:

1. Is (NAME) currently attending school?
2. [If no to question 1] Did (NAME) attend school at any time during the current school year?
3. [If yes to question 1 or 2] Which level and grade is/was (NAME) attending?

Children are counted as being in school if (a) the response to questions 1 or 2 is 'yes'; and (b) the level of school attended is primary or subsequent levels. In different phases of the DHS, various education questions have been used. Recent DHS surveys provide the same information as the MICS, including whether the child attended school at any time during the school year. For earlier surveys, children in school can be identified from the responses to the following questions:

1. Has (NAME) ever been to school?
2. [If yes to question 1] What is the highest level of school (NAME) attended? What is the highest grade (NAME) completed at that level?
3. [If yes to question 1] Is (NAME) still in school?

Of the countries for which DHS data were used in producing the UIS/UNICEF global estimate, Bangladesh used the earlier survey module. In this case, the number of out-of-school children may be overestimated by temporary absenteeism and dropouts.

Usually the respondent is asked to respond to the first and second questions for all household members aged 5 years or older, and the third question for all household members aged 5 to 24 years. Children are counted as being in school if (a) the answer to questions 1 and 3 is 'yes'; and (b) the highest level of school attended is primary or a subsequent level.

For the purpose of this study, missing values for any education variable, in both MICS and DHS datasets,
are imputed as if the child is not attending school. If observations with missing values are excluded rather than imputed in this way, the share of children out of school would decrease.

The calculation of the number of children out of school is similar to the method of calculation used for administrative data. Let s_{c} be the starting age of primary education and e_{c} the exit age from primary education in country c. Further let Pop(age1, age2) $)_{, ~ g}$ be the population of gender g in the age range from age 1 to age2 in country c. The primary school-age population in country c is then:

$$
\text { SchoolPop }_{c, M+F}=\operatorname{Pop}\left(s_{c}, e_{c}\right)_{c, g}
$$

The sample from the household survey contains a group of children of primary school age. This group shall be called SurveyPop $\left(s_{c}, e_{c}\right)_{c, M+F}$. Children in school are a sub-sample of this group that can be identified with the responses to the survey questions. The number of pupils of primary school age in primary (ISCED 1) or secondary education (ISCED2 and 3) in the survey data is then SurveyPupil $\left(s_{c}, e_{c}\right)_{c}, M+F_{I} /$ ICEDO123 2. The rate of children out of primary school in the sample is:

$$
\text { SurveyROOPS }_{\mathrm{C}, \mathrm{M}+\mathrm{F}}=
$$

1 - (SurveyPupil $\left(s_{c}, e_{c}\right)_{c, ~ M+F, I S C E D 0123 ~}$
$/$ SurveyPop $\left(\mathrm{s}_{\mathrm{c}}, \mathrm{e}_{\mathrm{c}}\right)_{c, M+F}$
By definition, this rate cannot exceed 100%, and in contrast to the calculation based on administrative data, no adjustment is necessary. The rate of children out of school is applied to the primary school-age population in country c to yield the absolute number of children out of school. The primary school-age population for the reference year is based on UNPD data.

$$
\text { NOOPS }_{\mathrm{C}, \mathrm{M}+\mathrm{F}}=\text { SurveyROOPS }_{\mathrm{C}, \mathrm{M}+\mathrm{F}} * \text { SchoolPop }_{\mathrm{C}, \mathrm{M}+\mathrm{F}}
$$

It should be noted that household surveys are subject to sampling and non-sampling errors. The sampling errors for the surveys used in this report are provided in Statistical Table A16. Standard errors range from below 0.3 percentage points to more than 2 percentage points in Cameroon, Chad, Gambia, Mozambique, Nepal, Nigeria and Suriname. The difference between the lower and upper boundary of the 95% confidence interval is 1 to 10 percentage points, with a median of 4.5 percentage points.

B. Methodology for the combination of administrative and household survey data

The overall goal of the joint UIS/UNICEF estimate is to produce a global statistic that reflects the best information available on primary school participation. The global and regional estimates are based on administrative data from the UIS survey and are also informed by data from MICS and DHS surveys.

The calculation of global and regional averages is conducted in two steps:

1) A set of general rules is applied to the countryspecific data in order to calculate the joint estimate:

- use UIS data when no MICS/DHS data are available;
- use MICS/DHS data when no publishable UIS data are available;
- use UIS data when the participation rate based on UIS data is not more than 5% points higher than that based on MICS/DHS.

Although the joint methodology needs further development in order to allow the production of time series, preference is given to administrative data which are available on an annual basis. This facilitates the regular update of the out-of-school children estimate and the calculation of reliable trend data.
2) After applying this set of rules, some countries are left for which administrative and household survey data show substantially different results. For each country the absolute number of the difference in out-of-school children between the two sources is calculated. The following data review aims to reduce the sum of the absolute difference between the data sources below a given threshold. It was set as a target that the sum of the differences between the data sources caused by countries with different results (and not included in the process of joint data review by the organizations) must not exceed 3\% of the presented global number of out-of-school children, and it must in any region either be below 250,000 or not exceed 4%. This range was set based upon the uncertainty relating to the two measures.

In order to ensure greater coherence between data sources, the countries contributing most to the difference in absolute terms were selected for a joint data review by UIS and UNICEF. The selection for the special data review was guided by the impact of the country's result on the global or regional estimates and is not based on a judgement of quality of the underlying data. An extensive review of all data, although desirable, goes beyond the scope of this report. The review of the data sources for selected countries is based on different data sources and a literature review using other national and international documentation and survey results.

In order to produce the global estimate, data for Bangladesh, Benin, Cambodia, Egypt, Ethiopia, India, Iraq, Philippines, Viet Nam and Yemen were examined. Additionally data for Chad, Guatemala, Guinea, Nepal and Togo were reviewed in order to reach regional targets. The UIS also collected information relevant for the calculation of out-of-school children based on other sources. Based on these reviews, a decision was taken to use the UIS result, the MICS/DHS result, or to produce a new estimate.

Bangladesh

Household survey data and administrative data appear to be coherent with respect to the number of pupils for all ages combined. However, differences between net enrolment and net attendance rates are caused by dissimilarities in the age distribution of pupils. The age distribution of primary students reflected by the administrative data is based on a national estimate of primary pupils in secondary schools (BANBEIS, 2002). The estimate was judged not to be representative of the whole primary sector. Three household surveys confirm the range of net attendance rates reflected by the DHS 1999/00 data (MICS 2003, Campaign for Popular Education, 2002; BIDS, 1998).

Conclusion: DHS (1999/00) were used for the joint estimate. Applying the DHS (1999/00) age distribution to administrative data was not considered appropriate.

India

The age distribution for the administrative data is reported on the basis of data available from primary schools in 193 districts from the District Information System (DISE). The age distribution was applied to the national level (593 districts). It should be noted that the 193 districts are not a representative sample but are those with available data. Furthermore, a number of primary education programmes are not covered by DISE, such as the Education Guarantee Scheme (EGS) programmes. It is assumed that the pupils in those programmes have the same age distribution as observed by DISE.

The UIS/UNICEF joint review considered the coverage of the DISE age data as too low (193 out of 593 districts) to be reliable. The authors of a DISE analytical report stated that the age data were not reliable enough to calculate net enrolment rates (Mehta, 2004). Administrative data show that the participation rate for children aged 6 years is 99.2% and that pupils begin to drop out of school from age 7. This picture is in contrast to other information sources and survey data.

MICS and DHS data show lower levels of participation which is verified for two regions (Uttar Pradesh and Bihar) on the basis of the World Bank's Living Standards Measurement Study carried out in 1997/98 (World Bank).

Conclusion: National sources suggest that the age data available from estimated administrative data are not sufficiently reliable to produce age-based indicators. MICS (2000) data are used for the global estimate.

Ethiopia

According to administrative data, the number of primary pupils grew substantially since 1998 (a 40\% increase). The age distribution of the administrative data provided in 2001 was identical to the age distribution in 1998 based on calculations from the UIS database. This does not appear to take into account the changes due to increased enrolments. Therefore the UIS/UNICEF review team had concerns it might overstate the enrolment of primary age. The total number of students was judged as reliable.

Conclusion: Administrative data were used for the total number of pupils. The age distribution
obtained from DHS (2000) was used to re-estimate the distribution of pupils by age.

Philippines

The MICS (1999) survey was conducted late in the school year, creating potential problems in terms of calculating out-of-school figures. By adjusting the ages of children by one year, the adjusted net attendance rate is more consistent with results from administrative data. The national report on MICS uses the age range 7 to 12 years and not the official primary school age according to ISCED (NSO-MICS, 1999).

Conclusion: Administrative data were used for the global estimate.

Benin

The most recent administrative data available are considerably older than the most recent household survey data. The age distribution used to calculate indicators is of uncertain quality. Newly-received administrative data could not be verified before this report was finalised. However, they show a very high level of participation (NER=93\%, some participation rates for specific age groups exceed 100\%).

Conclusion: Until recent administrative data are validated, the more recent DHS (2001) results were used for the global estimation. These data may need to be revaluated when more recent administrative data have been reviewed.

Cambodia

Age-specific enrolment rates based on administrative data reported by Cambodia often exceed 100%. Because of this, the data published by the UIS have been adjusted by the nationallypublished net enrolment rates. The quality of these adjustments is difficult to judge.

Conclusion: DHS (2000) data were used for the global estimate.

Egypt

The difference between the attendance rates from DHS (2000) and administrative data for the same school year is 7\%. This difference can be attributed almost entirely to the differences in enrolment rates for 6-year-olds (age at grade 1). The difference
is partly explained by the timing of the DHS interviews, which were conducted in the latter half of the school year. Therefore a number of 6 -yearolds counted as out-of-school children were actually 5 -year-olds at the beginning of the school year. The attendance rate for 7 - to 12 -year-olds based on DHS data is higher than the rate based on administrative data. The adjustment of the ages of in DHS data leads to results which are more consistent to those of the administrative data.

Conclusion: Administrative data were used for the global estimate.

Iraq

No administrative data have been available since 1998. UIS data estimates were last available in 1999, the quality of which are difficult to judge.

Conclusion: Until more recent administrative data become available, the MICS (2000) data were used for the global estimate.

Viet Nam

The interviews for the MICS (2000) were conducted between May and June 2000, during the end of the school year or over the school break. After adjustment for the ages of children by adding one year, the data sources appear more consistent.

Conclusion: Administrative data were used for the global estimate.

Yemen

Administrative data for Yemen have shown a substantial increase in primary enrolments since 1997. However, administrative data for 2001/02 were deemed as unreliable. DHS data were used for the global estimate.

Guinea

Administrative data for first-time entrants to primary education show rates substantially lower than those for net enrolment rates. In other words, the intake into the education system cannot explain the primary school-age participation rates. These inconsistencies are already present in national
statistics (net enrolment rate: 62\%; net intake rate: 23%; gross intake rate: 51%; (MEPU EC, 2002)). A possible explanation is that the age distribution is inaccurate and the high participation rates are due to repetition rather than intake.

Conclusion: DHS (1999) data, which were used, were more coherent with administrative data on primary school intake.

Togo

Administrative data show that net enrolment rates by single year of age can exceed 100%. The reported number of school-age boys enrolled in primary education exceeds the number of boys in the primary school-age population. The NER for boys is 100%, while the NER for girls is as low as 81% to 86%. The UIS/UNICEF review considered that problems with the population data were potential sources of error. Population data from other sources, such as estimates produced by the international programme of the U.S. Bureau of the Census, reflects a total population which is more than 10% higher. Results from the MICS (2000) are in line with earlier results from DHS (1998).

Conclusion: MICS (2000) data were used.

Nepal

Administrative data are based on estimates, using national estimates of net enrolment rates. No observed administrative data by age are available after 1997. The estimate was considered unreliable since it shows the highest number of primary students at age 11 , which is older than the expected ending age of the primary education cycle.

Conclusion: MICS (2000) data were used for the global estimate.

Chad and Guatemala

No evidence is available to judge the data sources. Both countries need further consideration in terms of updating the out-of-school children estimate.

Preliminary conclusion: MICS (2000) and DHS (1998/99) data were used for the global estimate.

C. Administrative and household survey data: Why are they different?

The estimated numbers of primary school-age pupils based on administrative data and household survey data differ substantially in many countries. How can these differences between data sources be explained?

A common explanation stresses the difference between the concepts of enrolment (administrative data) and attendance (household survey data). Being enrolled in school is not necessarily the same as attending school. Children may be recorded in school enrolment records and yet not actually be attending school. ${ }^{5}$ Concerns have been also raised that enrolment rates can be overstated in education systems in order to meet goals or due to direct links to levels of financing and resources.

Given the assumption that children may be enrolled but not attending or that fictitious registrations are reported, it is of interest whether the number of pupils overall based on administrative data is systematically higher than that from household surveys. This appears to be the case when looking only at the primary school-age population. However,

Figure A1. Children in school: Administrative data compared to household survey data, primary school ages

a different picture emerges when a wider age band, including secondary school-age children, is used.

Figure A1 compares the percentage of children in school for the same reference year calculated from each data source. The horizontal axis shows the result obtained from household survey data and the vertical axis shows the result from administrative data. The chart on the left considers just the age range from primary school-age children. Among the 59 countries with comparable data, in 24 countries participation rates drop by

Household surveys tend to show a higher total number of pupils than administrative data, when considering a broader age group. five percentage points for the primary school-age group when household surveys are used instead of administrative data. The opposite is true for 10 countries.

Figure A2 compares the data for the age group 5 to 17 years. For 26 of the 59 countries, the results differ by more than five percentage points. However, the difference between sources is not systematic. There is a tendency for household survey data to cover a higher total number of children in school than administrative data when a wider age

Figure A2. Children in school: Administrative data compared to household survey data, 5 to 17-year-olds

Note: The reference year is the same for both sources. Data may, therefore, differ from the administrative data shown in Statistical Table A1. Countries with more than 10 points difference between the two sources are labelled.
Source: UNICEFIUNESCO Institute for Statistics, Statistical Table A1, UNESCO Institute for Statistics database.

[^10]range is being considered (18 countries), while the opposite is true for only eight countries. Of the 24 countries which have higher participation rates for primary school-age children based on administrative data, only seven show the same pattern for the 5 to 17 -year-old age group.

Administrative data tend to overestimate the share of pupils of primary school age

 of pupils. Figure A3 compares the percentage of pupils aged 5 to 17 years who are of primary school age by source of data. Administrative data tend to reflect a higher proportion of primary school-age children than household survey data (37 out of 59 countries). For example, in Bangladesh, the number of pupils aged 5 to 17 years based on household survey data is 28.5 million, compared to 27.2 million based on administrative data. However, using household survey data, only 49% of the 28.5 million are estimated to be of primary school age, compared to 60% of the 27.2 million based on administrative data. The number of pupils of primary school age according to administrative data, 16 million, exceeds the survey estimate by two million.Figure A3. Percentage of primary school-age pupils aged 5 to 17 years: Household survey and administrative data

[^11]
D. Methodology to estimate the proportion of late entrants and dropouts

Chapter 1 provides a typology to classify children out of school according to their exposure to education. Out-of-school children are classified as:

- never attended school
- likely to attend in the following years; or - will never attend school;
- has attended school but dropped out.

The allocation of children who have never attended school to date into the two groups cannot be made on the basis of micro- or macrolevel data. It is based on the probability of children attending school when they are older and cannot be derived from the characteristics of individual children. Only the proportion of the children that will fall in each group can be estimated using an indication of participation rates by single year of age at the global and regional levels. Nevertheless, the calculation is carried out on a country by country basis before aggregating the results.

Figure A4 illustrates the calculation. In a first step, the single age with the lowest non-participation rate is identified. The proportion not participating at that age is used as a proxy for the rate of children who will never participate across all ages.

In a second step, the size of the group of out-ofschool children that is expected to participate in the coming years is estimated. It is assumed that all out-of-school children younger than the age with the lowest levels of non-participation have some chance to enter school in the coming years. The proportion is simply estimated as the proportion out of school minus the proportion estimated to never enter school.

In a last step, the proportion of drop-outs is estimated. The proportion of children dropped out is estimated as the proportion out of school minus the portion estimated as having never participated.

Figure A4. Estimates of the proportion of out-of-school populations by type

The following calculation formula is applied to countries separately. Regional and global estimates are calculated as the sum of country results.

Let $R_{\text {age }}$ be the rate of out-of-school children for each age. $R_{\text {min }}$ is the minimum of all $R_{\text {age. }}$. $A G E_{\text {min }}$ is the age for which $R_{\text {age }}$ is the minimum. $P O P_{\text {age }}$ is the population by single year of age.

The number of out-of-school children that is expected to never enter school is estimated as:

$$
\text { OOSC }_{\text {never }}=\operatorname{Sum}\left(R_{\min } * P_{\text {age }}\right) \text { for all ages }
$$

The number of out-of-school children that is expected to enter school in future years is estimated as:

$$
\text { OOSC }_{\text {late entry }}=\operatorname{Sum}\left(\left(R_{\text {age }}-R_{\min }\right) * \text { POP }_{\text {age }}\right) \text { for ages }<A G E_{\min }
$$

The number of out-of-school children that dropped out is estimated as:

$$
\text { OOSC }_{\text {drop-out }}=\operatorname{Sum}\left(\left(R_{\text {age }}-R_{\min }\right) * P O P_{\text {age }}\right) \text { for ages }>A G E_{\min }
$$

Inconsistencies between the population data and administrative enrolment data can lead to participation rates exceeding 100\%. In this case, non-participation rates ($R_{\text {age }}$) are assumed to be zero. $A G E_{\text {min }}$ is the youngest age for which $R_{\text {age }}$ is zero.

ANNEX 2
Statistical Tables
table a1. PRIMARY SCHOOL-AGE CHILDREN IN AND OUT OF SCHOOL. ADMINISTRATIVE AND

Country or territory	Education system			Source for global and regional estimates	Enrolment data (administrative sources)								
	School year	Primary school age group	School-age population (thousands)		Children of primary school age (\%)								
					In school			In secondary education (included in "in school")			Out of school		
					Total	Male	Female	Total	Male	Female	Total	Male	Female
Central and Eastern Europe / Commonwealth of Independent States (CIS)													
Albania	2000/01	6-9	257	Enrolment ${ }^{1}$	97.2	97.3	97.0	-	-	-	2.8	2.7	3.0
Armenia	2001/02	7-9	149	Enrolment	87.5	87.9	87.0	2.9	3.1	2.8	12.5	12.1	13.0
Azerbaijan	2001/02	6-9	723	Enrolment	79.9	80.6	79.2	-	-	-	20.1	19.4	20.8
Belarus	2001/02	6-9	464	Enrolment	93.2*	1.0**	6.8
Bosnia and Herzegovina	2001/02	6-9	193	Attendance
Bulgaria	2001/02	7-10	352	Enrolment	92.3	92.9	91.8	2.0	1.9	2.1	7.7	7.1	8.2
Croatia	2001/02	7-10	202	Enrolment	94.7	95.1	94.3	6.2	5.9	6.5	5.3	4.9	5.7
Georgia	2001/02	6-9	276	Enrolment	90.7	90.9	90.5	-	-	-	9.3	9.1	9.5
Kazakhstan	2001/02	7-10	1,166	Enrolment	95.7	94.8	96.7	6.2	4.8	7.7	4.3	5.2	3.3
Kyrgyzstan	2001/02	7-10	454	Enrolment	90.0	91.7	88.4	-	-	-	10.0	8.3	11.6
Moldova, Republic of	2001/02	7-10	267	Enrolment	82.2	82.5	81.9	3.9	3.8	4.1	17.8	17.5	18.1
Romania	2001/02	7-10	1,049	Enrolment	91.6	91.9	91.3	3.2	3.0	3.3	8.4	8.1	8.7
Russian Federation	2001/02	7-9	4,883	Enrolment	88.6	88.0	89.2	x	x	x	11.4	12.0	10.8
Serbia and Montenegro	2000/01	7-10	386	Enrolment ${ }^{1}$	76.2 *	76.1*	76.4*	1.3**	1.3**	1.4**	23.8	23.9	23.6
Tajikistan	2001/02	7-10	641	Enrolment	96.0*	98.7*	93.3*	1.0**	1.3**	0.7**	4.0	1.3	6.7
The Former Yugoslav Rep. of Macedonia	2001/02	7-10	123	Enrolment	97.5	97.0	98.0	5.2	5.0	5.4	2.5	3.0	2.0
Turkey	2001/02	6-11	8,692	Enrolment	87.9**	91.0**	84.8**	-	-	-	12.1**	9.0**	15.2**
Turkmenistan	2001/02	7-10	478	Enrolment ${ }^{2}$	\cdots	...
Ukraine	2001/02	7-9	1,754	Enrolment	90.2*	90.3**	90.1**	2.7**	2.7**	2.8**	9.8	9.7**	9.9**
Uzbekistan	2001/02	7-10	2,495	Attendance	\ldots
Middle East and North Africa													
Algeria	2001/02	6-11	4,326	Enrolment	96.9	98.0	95.7	1.8	1.6	1.9	3.1	2.0	4.3
Bahrain	2001/02	6-11	83	Enrolment	92.2**	91.9**	92.6**	1.2**	1.2**	1.3**	7.8**	8.1**	7.4**
Djibouti	2001/02	6-11	110	Enrolment	34.3**	38.7**	29.8**	0.3**	0.5**	0.2**	65.7**	61.3**	70.2**
Egypt	2001/02	6-10	8,103	Enrolment	92.5**	94.5**	90.4**	2.2 **	2.3**	2.1**	7.5**	5.5**	9.6**
Iran, Islamic Republic of	2001/02	6-10	8,154	Enrolment	86.6*	x	\ldots	\cdots	13.4	\ldots	...
Iraq	1999/00	6-11	3,683	Attendance	90.5	97.6	83.2	-	-	-	9.5	2.4	16.8
Jordan	2001/02	6-11	777	Enrolment	94.9	94.3	95.5	3.6	3.3	3.8	5.1	5.7	4.5
Kuwait	2001/02	6-9	158	Enrolment	88.9	89.1	88.7	4.3	4.2	4.4	11.1	10.9	11.3
Lebanon	2001/02	6-11	440	Enrolment	91.6**	91.7**	91.6**	x	x	x	8.4**	8.3**	8.4**
Libyan Arab Jamahiriya	2001/02	6-11	657	Enrolment ${ }^{2}$	\ldots	\ldots	...
Morocco	2001/02	6-11	3,764	Enrolment	88.5	91.7	85.2	0.1	0.1	0.2	11.5	8.3	14.8
Oman	2001/02	6-11	382	Enrolment	76.1	75.6	76.6	1.6	1.5	1.7	23.9	24.4	23.4
Palestinian Autonomous Territories	2001/02	6-9	386	Enrolment	98.6*	98.2*	99.0*	4.0**	3.9**	4.1**	1.4	1.8	1.0
Qatar	2001/02	6-11	61	Enrolment	98.8	>99	98.0	5.3	5.2	5.5	1.2	<1	2.0
Saudi Arabia	2001/02	6-11	3,442	Enrolment	59.6	62.1	57.0	0.7	1.0	0.5	40.4	37.9	43.0
Sudan	1999/00	6-11	4,710	Enrolment	48.9**	53.3**	44.4**	x	x	x	51.1**	46.7**	55.6**
Syrian Arab Republic	2001/02	6-11	2,602	Enrolment	97.4	>99	94.7	2.8	3.0	2.6	2.6	-	5.3
Tunisia	2001/02	6-11	1,188	Enrolment	97.8*	98.0*	97.7*	1.0**	0.9**	1.1**	2.2	2.0	2.3
United Arab Emirates	2001/02	6-11	310	Enrolment	83.9*	84.9*	82.7*	3.0**	3.0**	3.0**	16.1	15.1	17.3
Yemen	2000/01	6-11	3,337	Attendance	67.6**	x	32.4**

Table A1. Primary school-age children in and out of school.
Administrative and household survey data

HOUSEHOLD SURVEY DATA

Enrolment data (administrative sources)							Attendance data (household surveys)									Country or territory
Children of primary school age (\%)			Number of children				Survey	Year	Children of primary school age (\%) Out of school			Number of children				
In pre-primary education (included in"out of school")			Out of school (thousands)									Out of school (thousands)3				
Total	Male	Female	Total	Male	Female \%Female				Total	Male	Female	Total	Male	Female	\%Female	
												Central and East Europe / Commonwealth of Independent States (CIS)				
...	7	4	4	50.9	Albania
...	19	9	10	50.8	DHS	2000	3.0	3.3	2.6	4	3	2	43.3	Armenia
3.1	3.2	3.1	145	72	73	50.4	MICS	2000	9.1	9.2	9.0	66	34	32	48.3	Azerbaijan
5.7	31	Belarus
...	MICS	2000	13.8	12.7	14.9	27	13	14	52.4	Bosnia and Herzegovina
0.5	0.5	0.5	27	13	14	52.2	Bulgaria
0.7	0.7	0.7	11	5	6	52.7	\ldots	Croatia
1.0	1.0	1.0	26	13	13	49.8	\ldots	Georgia
0.5	0.5	0.5	50	31	19	38.4	DHS	1999	1.5	1.7	1.3	18	10	8	42.9	Kazakhstan
0.8	0.8	0.8	45	19	26	57.8	DHS	1997	5.1	4.9	5.2	23	11	12	51.2	Kyrgyzstan
10.9	11.2	10.6	47	24	24	49.8	MICS	2000	1.6	2.0	1.1	4	3	1	35.7	Moldova, Republic of
...	88	44	44	50.4	\cdots	Romania
...	558	301	257	46.1	\ldots	...	\ldots	\ldots	Russian Federation
1.0	1.0	0.9	92	47	44	48.4	\ldots	\ldots	Serbia and Montenegro
1.2	1.3	1.2	26	4	21	83.2	MICS	2000	19.3	20.0	18.5	124	65	58	47.3	Tajikistan
1.8	1.7	1.8	3	2	1	38.0	\ldots	\ldots	The Former Yugoslav Rep. of Macedonia
...	1,049**	397**	652**	62.2**	DHS	2003	11.6	10.8	12.4	1,007	477	530	52.6	Turkey
...	...	\cdots	\cdots	...	\ldots	\cdots	\cdots	Turkmenistan
\cdots	\ldots	...	172	87**	85**	49.2**	\ldots	\cdots	...	\ldots	\ldots	...	\cdots	\cdots	...	Ukraine
...	MICS	2000	19.7	19.2	20.1	491	244	247	50.3	Uzbekistan
																Middle East and North Africa
...	136	45	92	67.3	MICS	2000	6.5	6.2	6.9	282	136	146	51.7	Algeria
0.3**	0.4**	0.3**	6**	3**	3**	46.4**	MICS	2000	13.7	14.0	13.4	11	6	5	47.8	Bahrain
...	72**	34**	38**	53.1**	\ldots	Djibouti						
0.2**	0.2**	0.2**	608**	226**	382**	62.8**	DHS	2000	14.4	12.5	16.5	1,170	518	652	55.8	Egypt
\ldots	\ldots	\ldots	1,095	\ldots	\cdots	\ldots	\ldots	Iran, Islamic Republic of
\ldots	348	46	303	86.9	MICS	2000	22.2	16.2	28.5	818	304	514	62.9	Iraq
\ldots	...	\ldots	40	23	17	42.8	\ldots	...	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	Jordan
...	17	9	9	49.8	...	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	...	Kuwait
0.8**	0.9**	0.7**	$37 * *$	19**	18**	49.1**	MICS	2000	3.1	2.7	3.4	13	6	7	54.7	Lebanon
...	\ldots	\ldots	\ldots	\ldots	Libyan Arab Jamahiriya
0.7	1.2	0.2	432	159	273	63.1	\ldots	\ldots	\ldots	\ldots	Morocco
-	-	-	91	48	44	47.8	\ldots	\ldots	\cdots	\cdots	\cdots	Oman
0.9	0.7	1.0	6	4	2	34.2	...	\ldots	\ldots	\ldots	\ldots	Palestinian Autonomous Territories
0.5	0.5	0.4	-	-	-	77.8	\ldots	\cdots	\cdots	Qatar
...	\ldots	...	1,390	668	723	52.0	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	Saudi Arabia
...	2,405**	1,120**	1,285**	53.4**	\ldots	\ldots	\ldots	\ldots	Sudan
-	-	-	67	-	67	>90	\ldots	\ldots	\cdots	\ldots	...	\ldots	\ldots	\ldots	\ldots	Syrian Arab Republic
...	26	12	14	52.9	\cdots	\ldots	\cdots	\ldots	Tunisia
0.6	0.6	0.6	50	24	26	52.5	\ldots	\cdots	\ldots	\ldots	...	\ldots	\cdots	\cdots	\ldots	United Arab Emirates
...	\ldots	...	1,081**	DHS	1997	45.4	32.2	59.3	1,515	549	966	63.8	Yemen

TABLE A1. PRIMARY SCHOOL-AGE CHILDREN IN AND OUT OF SCHOOL. ADMINISTRATIVE AND

Country or territory	Education system			Source for global and regional estimates	Enrolment data (administrative sources)								
	School year	Primary school age group	School-age population (thousands)		Children of primary school age (\%)								
					In school			In secondary education (included in "in school")			Out of school		
					Total	Male	Female	Total	Male	Female	Total	Male	Female
Eastern and Southern Africa													
Angola	1998/99	6-9	1,383	Enrolment ${ }^{1}$	61.5*	66.0*	56.9*	x	x	x	38.5	34.0	43.1
Botswana	2001/02	6-12	319	Enrolment	81.1	79.3	82.9	0.2	0.1	0.2	18.9	20.7	17.1
Burundi	2001/02	7-12	1,151	Enrolment	53.5**	58.9**	48.1**	-	-	-	46.5**	41.1**	51.9**
Comoros	1999/00	6-11	112	Enrolment ${ }^{1}$	55.1**	59.9**	50.2**	x	x	x	44.9**	40.1**	49.8**
Eritrea	2001/02	7-11	546	Enrolment	42.9	46.1	39.6	0.4	0.3	0.4	57.1	53.9	60.4
Ethiopia	2001/02	7-12	11,285	Attendance	46.9	52.4	41.3	0.7	0.9	0.6	53.1	47.6	58.7
Kenya	2001/02	6-12	6,074	Enrolment	70.2**	69.7**	70.8**	0.3**	0.4**	0.3**	29.8**	30.3**	29.2**
Lesotho	2001/02	6-12	334	Enrolment	84.7	81.4	88.0	0.3	0.2	0.4	15.3	18.6	12.0
Madagascar	2001/02	6-10	2,311	Enrolment	69.0	68.6	69.4	0.4	0.3	0.5	31.0	31.4	30.6
Malawi	2001/02	6-11	1,952	Enrolment	81.5**	81.5**	81.5**	0.5	0.5	0.5	18.5**	18.5**	18.5**
Mauritius	2001/02	6-11	126	Enrolment	>99	98.5	>99	7.1	6.3	7.8	<1	1.5	-
Mozambique	2001/02	6-10	2,585	Enrolment	59.7	63.5	56.0	-	-	-	40.3	36.5	44.0
Namibia	2001/02	6-12	376	Enrolment	78.4	75.9	80.9	0.2	0.1	0.2	21.6	24.1	19.1
Rwanda	2001/02	7-12	1,312	Enrolment	84.3*	83.1*	85.4*	x	x	x	15.7	16.9	14.6
Seychelles	2001/02	6-11	8	Enrolment	94.8	94.9	94.7	7.6	7.4	7.8	5.2	5.1	5.3
Somalia	2001/02	6-12	1,772	Attendance
South Africa	2001/02	7-13	7,052	Enrolment	93.9*	92.9*	94.9*	x	x	x	6.1	7.1	5.1
Swaziland	2001/02	6-12	211	Enrolment	77.0	76.6	77.4	0.3	0.3	0.4	23.0	23.4	22.6
Tanzania, United Republic of	2001/02	7-13	6,979	Enrolment	54.4*	54.3*	54.5*	x	x	x	45.6	45.7	45.5
Uganda	2001/02	6-12	5,059	Attendance
Zambia	2001/02	7-13	2,063	Enrolment	66.6**	66.9**	66.3**	0.6**	0.5**	0.7**	33.4**	33.1**	33.7**
Zimbabwe	2002/03	6-12	2,555	Enrolment ${ }^{1}$	80.5	80.0	81.0	0.6	0.5	0.7	19.5	20.0	19.0
West and Central Africa													
Benin	1999/00	6-11	1,070	Attendance	71.7**	85.0**	58.4**	0.4	0.5	0.3	28.3**	15.0**	41.6**
Burkina Faso	2001/02	7-12	2,127	Enrolment	35.5**	41.5**	29.4**	x	x	x	64.5**	58.5**	70.6**
Cameroon	2001/02	6-11	2,570	Attendance	\ldots	...	\ldots	\ldots
Cape Verde	2001/02	6-11	73	Enrolment	98.9	>99	98.3	0.3	0.3	0.3	1.1	<1	1.7
Central African Republic	2001/02	6-11	621	Attendance	...	\ldots	\ldots	...	\cdots	\cdots	...
Chad	2001/02	6-11	1,385	Enrolment	58.3**	69.8**	46.8**	x	x	x	41.7**	30.2**	53.2**
Congo	2001/02	6-11	614	Enrolment ${ }^{2}$	\ldots	\ldots	\ldots	...	\ldots
Côte d'Ivoire	2001/02	6-11	2,635	Enrolment	63.8*	73.5*	54.0*	x	x	x	36.2	26.5	46.0
Democratic Republic of the Congo	1998/99	6-11	8,108	Enrolment ${ }^{1}$	34.8*	35.7*	33.8*	0.2**	0.3**	0.1**	65.2	64.3	66.2
Equatorial Guinea	2001/02	7-11	62	Enrolment	85.0*	91.6*	78.3*	x	x	x	15.0	8.4	21.7
Gabon	2000/01	6-11	207	Enrolment ${ }^{1}$	79.6**	80.1**	79.2**	x	x	x	20.4**	19.9**	20.8**
Gambia	2001/02	7-12	204	Enrolment	73.9**	77.1**	70.7**	1.1**	1.1**	1.0**	26.1**	22.9**	29.3**
Ghana	2001/02	6-11	3,177	Enrolment	61.0*	62.2*	59.7*	0.8**	0.8**	0.7**	39.0	37.8	40.3
Guinea	2001/02	7-12	1,294	Enrolment	61.9	69.5	54.0	0.4	0.5	0.3	38.1	30.5	46.0
Guinea-Bissau	1999/00	7-12	215	Enrolment ${ }^{1}$	45.4	53.1	37.7	0.2	0.2	0.1	54.6	46.9	62.3
Liberia	1999/00	6-11	471	Enrolment ${ }^{1}$	69.9	78.6	61.1	-	-	-	30.1	21.4	38.9
Mali	1998/99	7-12	1,966	Enrolment ${ }^{1}$	38.6**	44.8**	32.2**	x	x	x	61.4**	55.2**	67.8**
Mauritania	2001/02	6-11	434	Enrolment	66.7**	68.2**	65.2**	-	-	-	33.3**	31.8**	34.8**
Niger	2001/02	7-12	1,900	Enrolment	34.6	41.1	27.8	0.3	0.4	0.3	65.4	58.9	72.2
Nigeria	2001/02	6-11	20,093	Attendance	\cdots	...	\cdots	\cdots

Table A1. Primary school-age children in and out of school.
Administrative and household survey data

HOUSEHOLD SURVEY DATA

Table A1. Primary school-age children in and out of school.
Administrative and household survey data

HOUSEHOLD SURVEY DATA

Enrolment data (administrative sources)							Attendance data (household surveys)									Country or territory
Children of primary school age (\%)			Number of children				Survey	Year	Children of primary school age (\%)Out of school			Number of childrenOut of school (thousands)3				
In pre-primary education (included in"out of school")			Out of school (thousands)													
Total	Male	Female	Total	Male	Female \%Female				Total	Male	Female	Total	Male	Female	\%Female	
-	-	-	-**	-**	* -**	>90**	MICS	2000	22.1	22.6	21.6	5	3	2	48.7	Sao Tome and Principe
...	661	305	356	53.8	MICS	2000	51.6	48.4	54.8	820	388	432	52.7	Senegal
...	MICS	2000	59.1	57.2	61.0	431	207	224	52.0	Sierra Leone
-	-	-	68	-	68	>90	MICS	2000	36.6	32.3	40.9	288	128	160	55.7	Togo
																South Asia
...	Afghanistan, Islamic Republic of
\ldots	1,813	1,040	772	42.6	DHS	1999/00	20.7	21.6	19.8	3,756	2,009	1,747	46.5	Bangladesh
-	-	-	66	31	35	52.6	Bhutan
...	13,186*	2,560 *	10,626 *	80.6 *	MICS	2000	23.1	19.7	26.7	26,7621	11,798	14,964	55.9	India
1.3	1.4	1.3	1	-	-	37.9	\cdots	...	\ldots	Maldives
...	832**	358**	* 474**	56.9**	MICS	2000	33.8	28.9	39.0	1,049	465	584	55.7	Nepal
\cdots	...	\cdots	7,813**	3,326**	* 4,487**	57.4**	Survey	2000/01	43.4	38.1	49.1	8,641	3,914	4,728	54.7	Pakistan
-	-	-	-	-	-	-	\ldots	...	\ldots	Sri Lanka
																East Asia and the Pacific
...	\ldots	\ldots	\ldots	...	\ldots	\ldots	...	Brunei Darussalam
0.7**	0.6**	0.7**	301**	120**	* 181**	60.1**	DHS	2000	34.7	34.2	35.3	768	383	385	50.1	Cambodia
\ldots	4,447**	2,530**	* 1,917**	43.1**	\cdots	\ldots	China
...	\ldots	\ldots	...	\ldots	\ldots	\ldots	\ldots	\ldots	Cook Islands
...	\ldots	...	\ldots	\ldots	Democratic People's Republic of Korea
-	-	-	-**	-**	*	-	\ldots	...	\ldots	\cdots	\ldots	...	Fiji
...	962	434	528	54.9	DHS 2	2002/03	5.6	5.9	5.2	1,448	786	662	45.7	Indonesia
-	-	-	-	-	-	-	\ldots	Kiribati
...	128	53	75	58.8	MICS	2000	37.9	35.5	40.4	282	134	147	52.3	Lao People's Democratic Republic
2.4	2.5	2.1	6	3	3	51.9	\ldots	...	\ldots	\ldots	Macao, China
\ldots	153	80	73	47.7	\cdots	\cdots	\cdots	\cdots	Malaysia
...	\ldots	\ldots	...	\ldots	\ldots	Marshall Islands
-	-	-	-	-	-	-	\cdots	...	\ldots	\ldots	...	\ldots	Micronesia (Federated States of)
...	24	15	10	39.5	MICS	2000	20.8	21.3	20.4	51	26	24	48.1	Mongolia
...	968	492	477	49.2	MICS	2000	20.5	20.6	20.5	1,096	555	541	49.4	Myanmar
...	-**	-**	* -**	46.0**	\ldots	\ldots	\ldots	\ldots	...	\ldots	\ldots	\ldots	...	Nauru
-	-	-	-	-	-	>90	...	\ldots	...	\ldots	Niue
-	-	-	-**	-	-**	>90**	\ldots	\cdots	\ldots	\cdots	\ldots	...	\ldots	\ldots	...	Palau
...	231**	104**	* 127**	55.1**	\cdots	\cdots	...	\ldots	\cdots	Papua New Guinea
0.9	0.8	1.1	747	446	301	40.3	MICS	1999	18.1	19.3	16.9	2,072	1,127	944	45.6	Philippines
3.0	2.5	3.4	-	-	-	51.2	\ldots	Samoa
...	\ldots	...	Singapore							
...	\ldots	\cdots	\ldots	...	\cdots	...	\ldots	...	\cdots	Solomon Islands
7.0**	7.1**	6.8**	845**	388**	* 457**	54.1**	\cdots	\ldots	\ldots	\ldots	\ldots	...	\ldots	Thailand
...	\cdots	\cdots	\ldots	\cdots	\cdots	Timor-Leste
...	\ldots	\ldots	\ldots	\ldots	\ldots	...	\ldots	Tokelau
2.5	4.0	0.9	-	-		51.2	...	\ldots	Tonga
-	-	-	-	-	-	>90	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots	\ldots	Tuvalu
5.5	5.5	5.4	2	1	-	41.3	\cdots	\cdots	Vanuatu
0.2**	532**	MICS	2000	12.4	12.0	12.8	1,117	549	568	50.9	Viet Nam

TABLE A1. PRIMARY SCHOOL-AGE CHILDREN IN AND OUT OF SCHOOL. ADMINISTRATIVE AND

Country or territory	Education system			Source for global and regional estimates	Enrolment data (administrative sources)								
	School year	Primary school age group	School-age population (thousands)		Children of primary school age (\%)								
					In school			In secondary education (included in "in school")			Out of school		
					Total	Male	Female	Total	Male	Female	Total	Male	Female
Latin America and the Caribbean													
Anguilla	2001/02	5-11	1	Enrolment	97.8	97.1	98.5	1.2	0.8	1.5	2.2	2.9	1.5
Antigua and Barbuda	2001/02	5-11	...	Enrolment ${ }^{2}$
Argentina	2001/02	6-11	4,098	Enrolment	>99	>99	>99	0.5	0.5	0.5	<1	-	<1
Aruba	2001/02	6-11	9	Enrolment	96.7	97.4	96.0	-	-	0.1	3.3	2.6	4.0
Bahamas	2001/02	5-10	37	Enrolment	92.9**	90.9**	95.1**	6.6**	5.7**	7.5**	7.1**	9.1**	4.9**
Barbados	2001/02	5-10	22	Enrolment	97.7	97.4	97.9	-	-	-	2.3	2.6	2.1
Belize	2000/01	5-10	38	Enrolment ${ }^{1}$	97.9**	97.5**	98.2**	1.6	1.4	1.9	2.1**	2.5**	1.8**
Bermuda	2001/02	5-10	...	Enrolment ${ }^{2}$	\ldots	\cdots	...	\cdots	...	\ldots	...
Bolivia	2001/02	6-11	1,321	Enrolment	95.7*	95.5*	96.0*	x	x	x	4.3	4.5	4.0
Brazil	2001/02	7-10	13,287	Enrolment	94.5	93.6	95.5	0.8	0.7	0.9	5.5	6.4	4.5
British Virgin Islands	2001/02	5-11	3	Enrolment	94.2*	94.8*	93.6*	3.2**	3.0**	3.5**	5.8	5.2	6.4
Cayman Islands	2001/02	5-10	...	Enrolment ${ }^{2}$
Chile	2002/03	6-11	1,754	Enrolment ${ }^{1}$
Colombia	2001/02	6-10	4,684	Enrolment	89.4	89.7**	89.1**	2.7	$2.5 * *$	2.8**	10.6	10.3**	10.9**
Costa Rica	2001/02	6-11	510	Enrolment	90.8	90.0	91.5	0.1	0.1	0.2	9.2	10.0	8.5
Cuba	2001/02	6-11	969	Enrolment	97.1	97.4	96.7	1.4	1.2	1.5	2.9	2.6	3.3
Dominica	2001/02	5-11	...	Enrolment ${ }^{2}$	\ldots
Dominican Republic	2001/02	6-11	1,110	Enrolment	97.3	98.5	96.0	13.2	12.6	13.7	2.7	1.5	4.0
Ecuador	2001/02	6-11	1,696	Enrolment	>99	98.9	>99	1.8	1.7	1.9	<1	1.1	-
El Salvador	2001/02	7-12	866	Enrolment	90.7	90.6	90.9	1.8	1.6	2.0	9.3	9.4	9.1
Grenada	2000/01	5-11	17	Enrolment ${ }^{1}$	86.0**	91.0**	81.0**	x	x	x	14.0**	9.0**	19.0**
Guatemala	2001/02	7-12	1,913	Enrolment	85.0	86.9	82.9	-	-	-	15.0	13.1	17.1
Guyana	2000/01	6-11	90	Enrolment ${ }^{1}$	98.1	98.5	97.7	4.1	3.9	4.3	1.9	1.5	2.3
Haiti	2001/02	6-11	1,254	Attendance	\cdots	\cdots	\cdots
Honduras	2001/02	7-12	1,054	Enrolment	87.4**	86.7**	88.3**	-	-	-	12.6**	13.3**	11.7**
Jamaica	2001/02	6-11	328	Enrolment	95.9	95.7	96.1	0.7	0.6	0.9	4.1	4.3	3.9
Mexico	2001/02	6-11	13,452	Enrolment	>99*	98.3*	>99*	2.1**	2.0**	2.3**	<1	1.7	<1
Montserrat	1999/00	5-11	...	Enrolment ${ }^{1}$	\cdots	\cdots
Netherlands Antilles	2001/02	6-11	22	Enrolment	88.9	86.6	91.3	0.6	0.6	0.5	11.1	13.4	8.7
Nicaragua	2001/02	7-12	829	Enrolment	86.7	86.0	87.4	4.8	4.4	5.2	13.3	14.0	12.6
Panama	2001/02	6-11	371	Enrolment	>99*	>99*	>99*	1.0**	0.9**	1.1**	<1	<1	<1
Paraguay	2001/02	6-11	864	Enrolment	92.0*	91.6*	92.3*	0.5**	0.4**	0.5**	8.0	8.4	7.7
Peru	2001/02	6-11	3,600	Enrolment	>99	>99	>99	1.9	1.9	2.0	<1	<1	-
Saint Kitts and Nevis	2000/01	5-11	6	Enrolment ${ }^{1}$	86.2	81.5	91.5	4.6	3.4	6.1	13.8	18.5	8.5
Saint Lucia	2001/02	5-11	22	Enrolment	99.0**	>99**	98.4**	0.9**	0.6**	1.2**	1.0**	$<1 * *$	1.6**
Saint Vincent and the Grenadines	2001/02	5-11	18	Enrolment	96.5**	95.9**	97.2**	4.6	3.6	5.6	3.5**	4.1**	2.8**
Suriname	2001/02	6-11	51	Enrolment	98.6*	97.3*	>99*	x	x	x	1.4	2.7	-
Trinidad and Tobago	2001/02	5-11	147	Enrolment	91.4**	90.5**	92.4**	4.6**	4.2**	5.1**	8.6**	9.5**	7.6**
Turks and Caicos Islands	2001/02	6-11	2	Enrolment	91.3	91.7	90.9	3.3	3.8	2.8	8.7	8.3	9.1
Uruguay	2001/02	6-11	332	Enrolment	\cdots	\cdots	\ldots	\cdots	\ldots	\ldots
Venezuela	2001/02	6-11	3,310	Enrolment	94.2	93.7	94.8	1.9	1.6	2.1	5.8	6.3	5.2

TABLE A1. PRIMARY SCHOOL-AGE CHILDREN IN AND OUT OF SCHOOL. ADMINISTRATIVE AND

Country or territory	Education system			Source for global and regional estimates	Enrolment data (administrative sources)								
	School year	Primary school age group	School-age population (thousands)		Children of primary school age (\%)								
					In school			In secondary education (included in "in school")			Out of school		
					Total	Male	Female	Total	Male	Female	Total	Male	Female
Industrialised countries													
Andorra	2001/02	6-11	\ldots	Enrolment ${ }^{2}$
Australia	2002/03	5-11	1,866	Enrolment ${ }^{1}$	95.2 *	94.8*	95.6*	0.2**	0.1**	0.2**	4.8	5.2	4.4
Austria	2001/02	6-9	375	Enrolment	-	-	-
Belgium	2001/02	6-11	730	Enrolment	>99*	>99*	>99*	0.3**	0.2**	0.3**	<1	<1	<1
Canada	2000/01	6-11	2,466	Enrolment ${ }^{1}$	>99**	>99**	>99**	-	-	-	$<1 * *$	<1**	<1**
Cyprus	2001/02	6-11	65	Enrolment	98.5	98.2	98.8	2.6	2.5	2.6	1.5	1.8	1.2
Czech Republic	2001/02	6-10	583	Enrolment	-	-	-	...	\cdots	...
Denmark	2001/02	7-12	397	Enrolment	>99	>99	>99	-	-	-	<1	<1	-
Estonia	2001/02	7-12	107	Enrolment	98.8	98.7	99.0	3.0	2.3	3.7	1.2	1.3	1.0
Finland	2001/02	7-12	385	Enrolment	>99	>99	>99	0.1	-	0.2	<1	<1	<1
France	2001/02	6-10	3,638	Enrolment	>99*	>99*	>99*	0.6**	0.6**	0.7**	<1	<1	<1
Germany	1999/00	6-9	3,479	Enrolment ${ }^{1}$	-	-	-
Greece	2001/02	6-11	652	Enrolment	>99*	>99*	>99*	x	x	x	<1	<1	<1
Hong Kong, SAR (China)	2001/02	6-11	461	Enrolment	>99**	>99**	>99**	4.2**	4.1**	4.3**	<1**	<1**	<1**
Hungary	2001/02	7-10	474	Enrolment	98.8	98.4	>99	8.0	7.0	9.1	1.2	1.6	<1
Iceland	2001/02	6-12	32	Enrolment	>99	>99	>99	-	-	0.1	<1	<1	<1
Ireland	2001/02	4-11	425	Enrolment	95.5	94.7	96.3	-	-	-	4.5	5.3	3.7
Israel	2001/02	6-11	671	Enrolment	98.0	97.9	98.1	-	0.1	-	2.0	2.1	1.9
Italy	2001/02	6-10	2,770	Enrolment	>99	>99	>99	0.9	0.8	0.9	<1	<1	<1
Japan	2001/02	6-11	7,273	Enrolment	>99	>99	>99	-	-	-	<1	<1	-
Latvia	2001/02	7-10	119	Enrolment	89.2 *	88.6*	89.8*	1.6**	1.3**	1.9**	10.8	11.4	10.2
Lithuania	2001/02	7-10	195	Enrolment	97.0	97.0	97.0	2.7	2.3	3.1	3.0	3.0	3.0
Luxembourg	2001/02	6-11	34	Enrolment	97.1	97.1	97.1	0.9	0.9	0.9	2.9	2.9	2.9
Malta	2001/02	5-10	31	Enrolment	95.4	95.4	95.5	-	-	-	4.6	4.6	4.5
Monaco	2001/02	6-10	\ldots	Enrolment ${ }^{2}$	\cdots	\cdots	\cdots
Netherlands	2001/02	6-11	1,195	Enrolment	>99*	>99*	98.8*	0.1**	0.1**	0.1**	<1	-	1.2
New Zealand	2002/03	5-10	356	Enrolment	>99**	>99**	>99**	0.2	0.2	0.2	$<1 * *$	$<1 * *$	<1**
Norway	2001/02	6-12	424	Enrolment	>99	>99	>99	-	-	-	<1	<1	<1
Poland	2001/02	7-12	3,114	Enrolment	98.2 *	98.0*	98.3*	x	x	x	1.8	2.0	1.7
Portugal	2001/02	6-11	663	Enrolment	99.0	98.7	>99	0.8	0.8	0.9	1.0	1.3	<1
Republic of Korea	2002/03	6-11	3,994	Enrolment ${ }^{1}$	>99	>99	>99	0.2	0.2	0.2	<1	<1	<1
San Marino	2001/02	6-10	\ldots	Enrolment ${ }^{2}$	\ldots	...	\cdots	...	\cdots	\cdots	\cdots	\cdots	\cdots
Slovakia	2001/02	6-9	280	Enrolment	\ldots	...	\ldots	-	-	-	\cdots	\cdots	\cdots
Slovenia	2001/02	7-10	83	Enrolment	95.3	95.2	95.3	2.2	1.8	2.6	4.7	4.8	4.7
Spain	2001/02	6-11	2,321	Enrolment	>99	>99	>99	-	-	-	<1	<1	<1
Sweden	2001/02	7-12	712	Enrolment	>99	>99	>99	-	-	-	<1	<1	<1
Switzerland	2001/02	7-12	500	Enrolment	>99	>99	>99	4.1	3.7	4.4	<1	<1	<1
United Kingdom	2001/02	5-10	4,522	Enrolment	>99	>99	>99	-	-	-	<1	<1	<1
United States	2001/02	6-11	25,314	Enrolment	93.7	93.1	94.4	1.0	0.9	1.1	6.3	6.9	5.6

Table A1. Primary school-age children in and out of school.
Administrative and household survey data

HOUSEHOLD SURVEY DATA

Enrolment data (administrative sources)							Attendance data (household surveys)									Country or territory
Children of primary school age (\%)			Number of children				Survey	Year	Children of primary school age (\%)Out of school			Number of children				
In pre-primary education (included in"out of school")			Out of school (thousands)										of sch	ol (thous	ands)3	
Total	Male	Female	Total	Male	Female \%Female				Total	Male	Female	Total	Male	Female	\%Female	
																Industrialised countries
...	\ldots	...	\ldots	...	\ldots	\ldots	\ldots	Andorra
4.4	4.4	4.4	90	50	40	44.3	\ldots	Australia
...	\ldots	Austria
0.8	1.0	0.6	7	4	3	47.1	\ldots	Belgium
...	10**	6**	4**	36.3**	\ldots	...	\ldots	Canada
0.4	0.5	0.3	-	-	-	40.0	Cyprus
...	\ldots	...	\ldots	\ldots	...	\ldots	\ldots	\ldots	\ldots	Czech Republic
-	-	-	-	-	-	-	\ldots	\ldots	Denmark
...	...	\ldots	1	-	-	42.1	Estonia
0.2	0.3	0.1	-	-	-	32.5	\ldots	Finland
0.3	0.3	0.2	11	8	3	31.3	France
...	\ldots	\ldots	\ldots	\ldots	...	\ldots	Germany
...	4	2	2	50.4	\ldots	\ldots	...	\ldots	\ldots	Greece
0.5**	0.5**	0.4**	2**	1**	1**	47.9**	\ldots	\ldots	\ldots	\ldots	\ldots	Hong Kong, SAR (China)
1.0	1.2	0.8	6	4	2	33.5	Hungary
...	-	-	-	66.7	\ldots	Iceland
0.4	0.3	0.4	19	12	8	39.8	\ldots	...	\ldots	\ldots	\ldots	...	\ldots	...	\ldots	Ireland
1.8	2.1	1.6	13	7	6	45.8	\ldots	\ldots	\ldots	Israel
0.3	0.3	0.2	12	4	8	63.7	\ldots	...	\ldots	\ldots	\ldots	\ldots	\ldots	Italy
-	-	-	2	2	-	-	...	\ldots	...	\ldots	\ldots	...	\ldots	...	\ldots	Japan
1.5	1.7	1.2	13	7	6	46.0	\ldots	...	\ldots	\ldots	\ldots	\ldots	\ldots	...	\ldots	Latvia
1.6	1.8	1.4	6	3	3	48.7	\ldots	...	\ldots	\ldots	\ldots	\ldots	\ldots	Lithuania
0.8	0.9	0.7	-	-	-	49.4	\ldots	\ldots	\ldots	Luxembourg
4.4	4.6	4.2	1	-	-	48.0	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	...	\ldots	...	Malta
...	\ldots	...	\ldots	...	\ldots	\ldots	\ldots	\ldots	\ldots	...	\ldots	Monaco
-	-	-	7	-	7	>90	\ldots	Netherlands								
0.4**	0.4**	0.4**	3**	-**	2**	67.6**	\ldots	...	\ldots	\ldots	...	\ldots	\ldots	\ldots	\ldots	New Zealand
0.1	0.1	0.1	1	-	-	28.1	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	...	Norway
0.3	0.3	0.2	57	31	26	44.9	\ldots	Poland								
0.6	0.5	0.7	7	4	2	35.6	\ldots	\cdots	\cdots	\ldots	\ldots	\cdots	...	\ldots	...	Portugal
-	-	-	6	-	6	>90	...	\ldots	Republic of Korea							
...	\ldots	San Marino								
...	\cdots	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots	Slovakia
...	4	2	2	48.0	\ldots	...	Slovenia							
-	0.1	-	9	1	8	85.7	\ldots	Spain								
0.2	0.3	0.1	3	-	2	71.8	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	...	\ldots	\ldots	Sweden
0.3	0.3	0.2	2	-	-	48.5	\ldots	...	\ldots	\ldots	\ldots	...	Switzerland
-	-	-	2	-	2	>90	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	...	\ldots	...	United Kingdom
2.0	2.6	1.4	1,593	897	695	43.7	\ldots	\ldots	United States

Notes:

[^12]Table A2. Children in and out of school by age

Country or territory ${ }^{2}$	Children in school at			Children out of school at		Children per single-year cohort expected to	
	School starting age	Age with the highest enrolment rate		School starting age	Age with the highest enrolment rate	Enter late	Never enter
	\%	\%	(Grade corresponding to age)	\%	\%	\%	\%
Eastern and Southern Africa							
Angola	17.3**	40.3**	4	82.7**	59.7 **	23.0**	59.7 **
Botswana	26.1	94.0	6	73.9	6.0	67.9	6.0
Burundi	46.1**	58.7**	3	53.9**	41.3 **	12.6**	41.3 **
Comoros	24.1**	65.7**	5	75.9**	34.3 **	41.7**	34.3 **
Eritrea	37.0	45.4	2	63.0	54.6	8.4	54.6
Ethiopia	30.7	59.4	4	69.3	40.6	28.7	40.6
Kenya	37.3**	80.0**	5	62.7**	20.0 **	42.7**	20.0 **
Lesotho	69.2	90.8	2	30.8	9.2	21.6	9.2
Madagascar	60.7	77.5	5	39.3	22.5	16.8	22.5
Malawi	68.3	89.9	4	31.7	10.1	21.6	10.1
Mauritius	96.2	>99	5	3.8	-	3.8	-
Mozambique	34.2	69.9	5	65.8	30.1	35.8	30.1
Namibia	34.3	98.1	6	65.7	1.9	63.9	1.9
Rwanda	83.2	86.8	4	16.8	13.2	3.7	13.2
Seychelles	66.8	>99	4	33.2	-	33.2	-
Somalia	\cdots	\ldots	\cdots
South Africa	86.5	>99	4	13.5	-	13.5	-
Swaziland	53.6	86.2	6	46.4	13.8	32.5	13.8
Tanzania, United Republic of	30.3	65.3	5	69.7	34.7	35.0	34.7
Uganda
Zambia	46.0**	76.1**	4	54.0**	23.9 **	30.1**	23.9 **
Zimbabwe	50.0	88.5	5	50.0	11.5	38.6	11.5
West and Central Africa							
$\text { Benin }{ }^{1}$	64.1**	84.0**	2	35.9**	16.0 **	19.9**	16.0 **
Burkina Faso	38.3**	40.1**	2	61.7**	59.9 **	1.7**	59.9 **
Cameroon	\ldots	\cdots
Cape Verde	74.5	>99	5	25.5	-	25.5	-
Central African Republic	...	\ldots	\cdots	\ldots	...	\ldots	\ldots
Chad	38.7	67.3	3	61.3	32.7	28.5	32.7
Congo	\cdots	\ldots	...
Côte d'Ivoire	62.4	71.1	2	37.6	28.9	8.7	28.9
Democratic Republic of the Congo	29.2	38.6	5	70.8	61.4	9.5	61.4
Equatorial Guinea	97.6	97.6	1	2.4	2.4	-	2.4
Gabon	20.5**	>99**	6	79.5**	-**	79.5**	- **
Gambia	61.2**	79.3**	2	38.8**	20.7 **	18.1**	20.7 **
Ghana	37.1	72.8	6	62.9	27.2	35.8	27.2
Guinea	43.2	71.6	4	56.8	28.4	28.5	28.4
Guinea-Bissau	34.7	54.0	4	65.3	46.0	19.4	46.0
Liberia	12.2	>99	4	87.8	-	87.8	-
Mali	33.4**	47.4**	3	66.6**	52.6**	14.0**	52.6 **
Mauritania	35.6**	80.7**	3	64.4**	19.3 **	45.2**	19.3 **
Niger	51.1	51.1	1	48.9	48.9	-	48.9
Nigeria

TABLE A2. CHILDREN IN AND OUT OF SCHOOL BY AGE

Country or territory ${ }^{2}$	Children in school at			Children out of school at		Children per single-year cohort expected to	
	School starting age	Age with the highest enrolment rate		School starting age	Age with the highest enrolment rate	Enter late	Never enter
	\%	\%	(Grade corresponding to age)	\%	\%	\%	\%
Sao Tome and Principe	90.2**	>99**	4	9.8**	-**	9.8**	-**
Senegal	28.9	77.5	6	71.1	22.5	48.6	22.5
Sierra Leone
Togo ${ }^{1}$	82.2	>99	5	17.8	-	17.8	-
South Asia							
Afghanistan, Islamic Republic of	...	\ldots	...	\ldots	\cdots	\ldots	...
Bangladesh ${ }^{1}$	97.9	>99	2	2.1	-	2.1	-
Bhutan	\ldots	\cdots	\ldots	\cdots	\cdots
India ${ }^{1}$	>99	>99	1	-	-	-	-
Maldives	85.5	>99	6	14.5	-	14.5	-
Nepal ${ }^{1}$	63.3**	74.0**	2	36.7**	26.0 **	10.7**	26.0 **
Pakistan	65.5**	65.5**	1	34.5**	34.5 **	-**	34.5 **
Sri Lanka	>99	>99	4	-	-	-	-
East Asia and the Pacific							
Brunei Darussalam	\ldots	\ldots	...	\ldots	...
Cambodia ${ }^{1}$	61.0**	95.0**	6	39.0**	5.0 **	34.0**	5.0 **
China	88.9	99.0	5	11.1	1.0	10.1	1.0
Cook Islands	...	\ldots	...	\ldots	\ldots
Democratic People's Republic of Korea	\ldots	\ldots	\ldots	\ldots	\cdots	...	\ldots
Fiji	95.7**	>99**	3	4.3**	-**	4.3**	-**
Indonesia	97.1	>99	2	2.9	-	2.9	-
Kiribati	\ldots	\ldots	\ldots	...	\ldots	\ldots	\ldots
Lao People's Democratic Republic	75.2	87.5	2	24.8	12.5	12.3	12.5
Macao, China	74.1	89.3	2	25.9	10.7	15.2	10.7
Malaysia	92.9	97.4	5	7.1	2.6	4.6	2.6
Marshall Islands	>99	>99	2	-	-	-	-
Micronesia (Federated States of)	\cdots	\cdots	\cdots	...	\cdots
Mongolia	80.4	93.2	3	19.6	6.8	12.9	6.8
Myanmar	93.2	93.2	1	6.8	6.8	-	6.8
Nauru	71.3**	95.4**	6	28.7**	4.6 **	24.1**	4.6 **
Niue	>99	>99	3	-	-	-	-
Palau	97.2**	>99**	4	2.8**	-**	2.8**	-**
Papua New Guinea	87.2**	87.2**	1	12.8**	12.8 **	-**	12.8 **
Philippines	51.2	>99	4	48.8	-	48.8	-
Samoa	87.9	>99	4	12.1	-	12.1	-
Singapore	\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	.
Solomon Islands	\cdots						
Thailand	54.1**	93.7**	3	45.9**	6.3 **	39.6**	6.3 **
Timor-Leste	\cdots						
Tokelau	...	\ldots	\ldots	\ldots	\ldots	\ldots	..
Tonga	96.6	>99	5	3.4	-	3.4	-
Tuvalu	95.7	>99	4	4.3	-	4.3	-
Vanuatu	66.3	>99	2	33.7	-	33.7	-
Viet Nam	88.6**	98.2**	3	11.4**	1.8 **	9.7**	1.8 **

Table A2. Children in and out of school by age

Country or territory ${ }^{2}$	Children in school at			Children out of school at		Children per single-year cohort expected to	
	School starting age	Age wi enro	the highest ment rate	School starting age	Age with the highest enrolment rate	Enter late	Never enter
	\%	\%	(Grade corresponding to age)	\%	\%	\%	\%
Latin America and the Caribbean							
Anguilla	98.9	>99	5	1.1	-	1.1	-
Antigua and Barbuda
Argentina	>99	>99	4	-	-	-	-
Aruba	87.1	>99	4	12.9	-	12.9	-
Bahamas	83.6**	>99**	6	16.4**	-**	16.4**	-**
Barbados	87.0	>99	5	13.0	-	13.0	-
Belize	92.0**	>99**	6	8.0**	-**	8.0**	-**
Bermuda	>99**	>99**	2	-**	-**	-**	-**
Bolivia	76.4	>99	5	23.6	-	23.6	-
Brazil	84.3	>99	2	15.7	-	15.7	-
British Virgin Islands	93.0	>99	6	7.0	-	7.0	-
Cayman Islands	\ldots	\ldots
Chile	\ldots	\ldots
Colombia	75.9	96.4	5	24.1	3.6	20.5	3.6
Costa Rica	61.3	98.7	3	38.7	1.3	37.3	1.3
Cuba	96.7	>99	6	3.3	-	3.3	-
Dominica	90.1	98.9	4	9.9	1.1	8.8	1.1
Dominican Republic	77.8	>99	5	22.2	-	22.2	-
Ecuador	98.8	>99	3	1.2	-	1.2	-
El Salvador	75.8	97.6	5	24.2	2.4	21.8	2.4
Grenada	55.3	>99	5	44.7	-	44.7	-
Guatemala	81.6	92.2	4	18.4	7.8	10.7	7.8
Guyana	>99**	>99**	1	-**	-**	-**	-**
Haiti	\ldots	\ldots	\ldots	\cdots	\ldots
Honduras	87.5**	97.3**	2	12.5**	2.7 **	9.7**	2.7 **
Jamaica	96.9	>99	2	3.1	-	3.1	-
Mexico	>99	>99	4	-	-	-	-
Montserrat	>99	>99	4	-	-	-	-
Netherlands Antilles	78.2	94.1	6	21.8	5.9	15.9	5.9
Nicaragua	83.2	90.9	4	16.8	9.1	7.8	9.1
Panama	97.7	>99	2	2.3	-	2.3	-
Paraguay	73.9	98.5	5	26.1	1.5	24.6	1.5
Peru	>99	>99	3	-	-	-	-
Saint Kitts and Nevis	31.7	>99	6	68.3	-	68.3	-
Saint Lucia	98.7**	>99**	6	1.3**	-**	1.3**	-**
Saint Vincent and the Grenadines	59.4**	>99**	3	40.6**	-**	40.6**	-**
Suriname	97.0**	>99**	4	3.0**	-**	3.0**	-**
Trinidad and Tobago	94.7**	>99**	3	5.3**	-**	5.3**	-**
Turks and Caicos Islands	85.9	>99	6	14.1	-	14.1	-
Uruguay	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	...
Venezuela	79.3	>99	3	20.7	-	19.9	-

Notes:

1) Household survey data. See Table A1 for source.
2) Year of reference, see Table A1.
** UIS estimation.

- Magnitude nil or negligible. For $\%$ out of school: less than 1%. For out of school: less than 1,000.
. Missing value.
table a3. NET ATtENDANCE RATE AND SHARE OF CHILDREN OUT OF SCHOOL BY BACKGROUND

Country or territory	Survey, year	Net attendance rate (\%)	Share of primary school-age children out of school (\%)											
			Total	Male	Female	Urban	Rural	Poorest quintile	Second quintile	Third quintile	Fourth quintile	Richest quintile	Mother has no formal education	Mother has formal education
Central and Eastern Europe / Commonwealth of Independent States (CIS)														
Armenia	DHS 2000	97.0	3.0	3.3	2.6	2.3	3.7	2.7	2.9	4.0	1.9	3.9	0.9	3.0
Azerbaijan	MICS 2000	90.9	9.1	9.2	9.0	8.4	9.8	11.3	8.1	10.7	8.2	6.4	16.3	9.0
Bosnia and Herzegovina	MICS 2000	86.2	13.8	12.7	14.9	13.3	14.1	20.0	13.6
Kazakhstan	DHS 1999	98.5	1.5	1.7	1.3	0.7	2.0	3.0	2.7	0.1	0.8	0.6	1.0	1.6
Kyrgyzstan	DHS 1997	94.9	5.1	4.9	5.2	6.0	4.7
Moldova, Republic of	MICS 2000	98.4	1.6	2.0	1.1	1.0	1.9	4.1	1.2	1.1	2.1	-	-	1.6
Tajikistan	MICS 2000	80.7	19.3	20.0	18.5	19.9	19.1	20.1	18.1	22.2	18.1	17.7	24.1	19.1
Turkey	DHS 2003	88.4	11.6	10.8	12.4	\ldots
Uzbekistan	MICS 2000	80.3	19.7	19.2	20.1	16.5	21.0	23.0	21.0	19.2	19.7	14.6	33.3	19.6
Middle East and North Africa														
Algeria	MICS 2000	93.5	6.5	6.2	6.9	4.3	9.6	19.3	6.6	4.6	5.6	3.0
Bahrain	MICS 2000	86.3	13.7	14.0	13.4	15.5	12.9
Egypt	DHS 2000	85.6	14.4	12.5	16.5	11.4	16.3	24.5	14.2	13.1	10.4	6.8	19.1	9.4
Iraq	MICS 2000	77.8	22.2	16.2	28.5	14.2	38.4	45.4	22.1	17.9	10.4	9.4	33.6	12.2
Lebanon	MICS 2000	97.0	3.0	2.7	3.4	5.2	2.7
Sudan	MICS 2000	52.6	47.4	46.3	48.4	33.8	61.4	80.7	63.4	47.4	30.5	14.7	59.2	25.3
Yemen	DHS 1997	54.6	45.4	32.2	59.3	23.2	51.8	68.3	56.7	43.4	34.2	19.7	47.3	25.4
Eastern and Southern Africa														
Angola	MICS 2000	58.0	42.0	42.6	41.4	36.2	55.3	64.4	55.0	47.9	36.1	18.0	57.5	33.0
Botswana	MICS 2000	84.2	15.8	17.2	14.5	12.0	19.0	27.1	14.4	13.7	9.6	8.9	20.2	12.8
Burundi	MICS 2000	46.7	53.3	50.5	56.0	31.6	54.8	64.5	62.5	58.1	49.3	37.5	58.4	38.4
Comoros	MICS 2000	30.8	69.2	69.2	69.3	58.9	71.6	76.1	74.2	68.7	64.8	60.0	72.1	59.3
Eritrea	DHS 2002	63.3	36.7	35.1	38.4	15.8	46.8	61.1	49.2	34.0	15.0	8.0	43.9	13.0
Ethiopia	DHS 2000	30.6	69.4	66.9	72.0	23.6	75.7	82.8	78.9	78.1	68.1	32.1	72.4	38.9
Kenya	DHS 2003	77.5	22.5	22.9	22.0	17.9	23.3	40.0	21.8	17.5	13.3	13.9	32.5	15.9
Lesotho	MICS 2000	65.4	34.6	37.6	31.5	29.1	35.9	52.3	40.8	32.9	26.2	21.9	49.6	33.0
Madagascar	MICS 2000	62.3	37.7	39.0	36.3	21.1	41.8	59.3	50.7	36.3	25.8	12.0	53.0	28.1
Malawi	DHS 2000	75.7	24.3	25.7	22.9	10.5	26.3	34.2	30.9	26.6	18.8	9.3	30.8	16.6
Mozambique	DHS 1997	49.9	50.1	46.8	53.2	23.9	57.2	65.8	61.0	58.1	42.1	21.1	58.1	44.7
Namibia	DHS 2000	78.1	21.9	22.2	21.7	16.5	23.8	25.8	26.3	21.5	18.5	14.0	24.6	18.3
Rwanda	MICS 2000	75.2	24.8	24.6	24.9	12.7	26.6	36.1	29.8	22.2	17.5	10.4	28.6	20.9
Somalia	MICS 1999	10.9	89.1	88.4	89.9	84.7	92.5	96.0	94.7	91.2	86.1	75.5	92.5	78.7
South Africa	DHS 1998	93.5	6.5	7.2	5.9	4.9	7.8	9.5	7.0	5.6	4.4	4.2	8.5	4.8
Swaziland	MICS 2000	71.5	28.5	28.3	28.7	25.2	29.0	40.1	27.3	24.8	21.0	20.5	38.7	23.9
Tanzania, United Republic of	DHS 1999	48.9	51.1	52.8	49.3	34.2	55.0	64.7	61.4	53.9	46.1	26.4	55.9	44.0
Uganda	DHS 2000/01	78.9	21.1	21.6	20.6	17.8	21.5	28.4	25.1	20.3	17.4	14.8	22.2	19.9
Zambia	DHS 2001/02	68.0	32.0	32.0	32.0	20.0	38.8	50.7	41.2	34.3	25.3	10.3	39.0	27.0
Zimbabwe	DHS 1999	85.5	14.5	15.2	13.7	9.4	16.0	19.6	15.1	14.3	13.3	7.0	17.1	12.3

CHARACTERISTICS

TABLE A3. NET ATTENDANCE RATE AND SHARE OF CHILDREN OUT OF SCHOOL BY BACKGROUND CHARACTERISTICS

Country or territory	Survey, year	Net attendance rate (\%)	Share of primary school-age children out of school (\%)											
			Total	Male	Female	Urban	Rural	Poorest quintile	Second quintile	Third quintile	Fourth quintile	Richest quintile	Mother has no formal education	Mother has formal education
Colombia	DHS 2000	92.5	7.5	8.0	7.0	6.3	9.9	13.3	7.8	7.4	3.8	3.1	13.6	6.1
Dominican Republic	MICS 2000	92.4	7.6	8.4	6.7	8.0	7.1	13.3	12.1	3.3	4.3	3.8	14.8	6.8
Guatemala	DHS 1998/99	77.8	22.2	20.2	24.2	19.5	23.8	\ldots	\ldots	\ldots	\ldots	...	\ldots	\ldots
Guyana	MICS 2000	96.5	3.5	3.9	3.0	2.1	4.0	5.5	3.4	3.8	2.1	1.6	11.0	3.3
Haiti	DHS 2000	54.4	45.6	47.8	43.4	28.9	53.0	66.1	53.0	44.4	33.2	21.9	53.5	30.0
Nicaragua	DHS 2001	80.4	19.6	22.7	16.5	10.4	29.6	42.7	21.0	13.3	6.5	4.5	31.8	12.0
Peru	DHS 2000	95.5	4.5	4.1	4.9	2.7	6.8	9.1	4.3	3.1	2.1	1.0	9.2	3.2
Suriname	MICS 1999/00	89.5	10.5	11.8	9.0	3.5	16.2	15.8	19.3	5.5	5.1	2.5	25.7	5.9
Trinidad and Tobago	MICS 2000	95.5	4.5	4.9	4.1	\ldots	\ldots	5.8	2.7	3.4	5.6	5.3	8.9	4.2
Venezuela	MICS 2000	93.5	6.5	7.4	5.5	...	\ldots	14.6	6.3	4.2	1.8	1.6	23.9	5.0
Regional averages (survey countries)														
Central/Eastern Europe, CIS		88.2	11.8	11.3	12.3	10.7	12.9	15.0	13.3	12.7	12.3	9.6	20.0	12.7
Middle East and North Africa		75.7	24.3	20.8	27.9	16.5	32.0	43.5	29.2	23.0	16.5	9.7	35.2	16.0
Eastern and Southern Africa		61.2	38.8	38.6	39.0	22.0	42.4	50.9	45.0	40.8	34.1	20.0	44.1	28.2
West and Central Africa		55.8	44.2	40.6	47.9	27.9	50.8	61.4	55.8	46.7	34.3	18.1	54.2	23.9
South Asia		74.3	25.7	22.4	29.0	18.2	28.1	33.7	29.2	19.9	16.3	10.6	33.6	12.6
East Asia and Pacific		87.6	12.4	12.7	12.1	8.4	14.3	21.5	13.4	10.1	7.8	6.0	24.1	9.9
Latin America and Caribbean		91.6	8.4	8.6	8.2	6.4	12.0	18.2	11.3	8.5	5.6	4.0	18.8	7.5
Total survey countries		74.0	26.0	24.1	28.1	17.5	30.0	38.3	32.1	25.3	19.9	12.1	36.1	16.2

[^13]TABLE A4. DISTRIBUTION OF PRIMARY SCHOOL-AGE POPULATION AND OUT-OF-SCHOOL CHILDREN BY

Country or territory	Children out of school by sex					Children out of school by place of residence				
	As \% of primary school-age population		As \% of total out-of-school children		\% point difference in female share of total and out-of-school populations	As \% of primary school-age population		As \% of total out-of-school children		\% point difference in rural share of total and out-ofschool populations
	Male	Female	Male	Female		Urban	Rural	Urban	Rural	
Central and Eastern Europe / Commonwealth of Independent States (CIS)										
Armenia	50.3	49.7	56.0	44.0	-5.6	53.0	47.0	41.6	58.4	11.4
Azerbaijan	52.8	47.2	53.2	46.8	-0.3	51.0	49.0	47.3	52.7	3.7
Bosnia and Herzegovina	51.2	48.8	47.2	52.8	4.0	36.1	63.9	34.9	65.1	1.2
Kazakhstan	51.2	48.8	57.4	42.6	-6.1	38.1	61.9	16.7	83.3	21.4
Kyrgyzstan	54.2	45.8	52.6	47.4	1.6	27.8	72.2	32.9	67.1	-5.0
Moldova, Republic of	51.4	48.6	64.5	35.5	-13.2	38.5	61.5	23.6	76.4	14.9
Tajikistan	51.1	48.9	53.2	46.8	-2.0	21.7	78.3
Turkey	49.8	50.2	46.3	53.7	3.5
Uzbekistan	52.2	47.8	51.0	49.0	1.2	30.2	69.8	25.3	74.7	4.8
Middle East and North Africa										
Algeria	50.5	49.5	47.7	52.3	2.8	58.3	41.7	38.3	61.7	20.0
Bahrain	48.0	52.0	49.1	50.9	-1.1	...	\ldots	\ldots	\cdots	...
Egypt	51.0	49.0	44.2	55.8	6.8	38.5	61.5	30.4	69.6	8.1
Iraq	51.2	48.8	37.3	62.7	13.9	67.2	32.8	43.1	56.9	24.1
Lebanon	52.3	47.7	46.6	53.4	5.7	\ldots
Sudan	50.2	49.8	49.1	50.9	1.1	50.7	49.3	36.1	63.9	14.6
Yemen	51.1	48.9	36.2	63.8	14.9	22.4	77.6	11.5	88.5	10.9
Eastern and Southern Africa										
Angola	50.1	49.9	50.8	49.2	-0.7	69.9	30.1	60.3	39.7	9.6
Botswana	48.9	51.1	53.2	46.8	-4.3	45.4	54.6	34.4	65.6	11.0
Burundi	48.6	51.4	46.0	54.0	2.6	6.4	93.6	3.8	96.2	2.6
Comoros	51.8	48.2	51.7	48.3	0.0	18.6	81.4	15.8	84.2	2.8
Eritrea	51.2	48.8	49.0	51.0	2.3	32.4	67.6	13.9	86.1	18.5
Ethiopia	51.0	49.0	49.2	50.8	1.8	12.1	87.9	4.1	95.9	8.0
Kenya	51.0	49.0	52.0	48.0	-1.1	14.7	85.3	11.7	88.3	3.0
Lesotho	50.9	49.1	55.3	44.7	-4.4	19.0	81.0	15.9	84.1	3.0
Madagascar	49.6	50.4	51.4	48.6	-1.8	19.7	80.3	11.0	89.0	8.7
Malawi	49.4	50.6	52.3	47.7	-2.9	12.9	87.1	5.6	94.4	7.3
Mozambique	49.4	50.6	46.2	53.8	3.2	21.4	78.6	10.2	89.8	11.2
Namibia	48.7	51.3	49.3	50.7	-0.6	25.7	74.3	19.3	80.7	6.4
Rwanda	48.4	51.6	48.1	51.9	0.3	13.0	87.0	6.7	93.3	6.4
Somalia	52.3	47.7	51.9	48.1	0.4	45.8	54.2	43.6	56.4	2.2
South Africa	49.4	50.6	54.5	45.5	-5.1	44.8	55.2	33.8	66.2	11.0
Swaziland	51.3	48.7	51.0	49.0	0.3	13.9	86.1	12.3	87.7	1.6
Tanzania, United Republic of	50.0	50.0	51.8	48.2	-1.7	18.9	81.1	12.7	87.3	6.2
Uganda	49.1	50.9	50.3	49.7	-1.2	10.5	89.5	8.9	91.1	1.7
Zambia	50.2	49.8	50.2	49.8	0.0	36.1	63.9	22.6	77.4	13.5
Zimbabwe	50.4	49.6	52.8	47.2	-2.5	23.1	76.9	15.0	85.0	8.0

Table A4. Distribution of primary school-age population and out-of-school children by background characteristics

BACKGROUND CHARACTERISTICS

Children out of school by household wealth					Children out of school by mother's education					Country or territory
As \% of primary school-age population		As \% of total out-of-school children		\% point difference in poorest share of total and out-of-school populations	As \% of primary school-age population		As \% of total out-of-school children		\% point difference in share of children with a mother with no education of total and out-of-school populations	
Richest 40\%	Poorest 60\%	Richest 40\%	Poorest 60\%		Mother with education	Mother with no education	Mother with education	Mother with no education		
							Central and Eastern Europe / Commonwealth of Independent States (CIS)			
33.8	66.2	30.9	69.1	2.9	97.9	2.1	99.4	0.6	-1.4	Armenia
35.0	65.0	28.6	71.4	6.4	98.2	1.8	96.8	3.2	1.4	Azerbaijan
...	\ldots	...	97.6	2.4	96.5	3.5	1.1	Bosnia and Herzegovina
33.1	66.9	15.2	84.8	17.9	92.6	7.4	95.3	4.7	-2.7	Kazakhstan
...	\ldots	\ldots	...	\ldots	\ldots	Kyrgyzstan
38.8	61.2	24.7	75.3	14.1	99.7	0.3	100.0	0.0	-0.3	Moldova, Republic of
36.5	63.5	33.9	66.1	2.7	97.1	2.9	96.4	3.6	0.7	Tajikistan
...	\ldots	...	\ldots	\ldots	...	\ldots	Turkey
37.1	62.9	32.2	67.8	4.8	99.9	0.1	99.8	0.2	0.1	Uzbekistan
										Middle East and North Africa
47.8	52.2	31.1	68.9	16.7	Algeria
\ldots	69.8	30.2	65.8	34.2	4.0	Bahrain
35.3	64.7	21.0	79.0	14.3	47.9	52.1	31.1	68.9	16.8	Egypt
36.0	64.0	16.3	83.7	19.7	53.2	46.8	29.2	70.8	24.0	Iraq
...	\ldots	86.2	13.8	76.2	23.8	10.0	Lebanon
39.7	60.3	19.3	80.7	20.4	34.8	65.2	18.6	81.4	16.2	Sudan
37.1	62.9	22.3	77.7	14.8	8.7	91.3	4.9	95.1	3.8	Yemen
										Eastern and Southern Africa
45.5	54.5	28.6	71.4	16.8	63.3	36.7	49.7	50.3	13.6	Angola
31.6	68.4	18.5	81.5	13.1	59.4	40.6	48.1	51.9	11.3	Botswana
46.7	53.3	38.3	61.7	8.3	25.2	74.8	18.2	81.8	7.1	Burundi
36.3	63.7	32.8	67.2	3.5	22.7	77.3	19.5	80.5	3.3	Comoros
33.0	67.0	10.7	89.3	22.3	23.2	76.8	8.2	91.8	15.0	Eritrea
37.2	62.8	27.5	72.5	9.7	9.1	90.9	5.1	94.9	4.0	Ethiopia
32.9	67.1	19.8	80.2	13.1	60.4	39.6	42.9	57.1	17.6	Kenya
39.7	60.3	27.6	72.4	12.1	90.3	9.7	86.0	14.0	4.2	Lesotho
38.0	62.0	19.8	80.2	18.2	61.6	38.4	45.9	54.1	15.6	Madagascar
38.8	61.2	22.6	77.4	16.2	46.0	54.0	31.4	68.6	14.6	Malawi
38.4	61.6	24.1	75.9	14.3	59.9	40.1	53.5	46.5	6.5	Mozambique
33.1	66.9	24.6	75.4	8.5	42.3	57.7	35.4	64.6	7.0	Namibia
31.9	68.1	20.7	79.3	11.3	50.1	49.9	42.3	57.7	7.8	Rwanda
37.3	62.7	33.9	66.1	3.4	24.2	75.8	21.4	78.6	2.8	Somalia
31.3	68.7	20.5	79.5	10.7	53.0	47.0	39.2	60.8	13.8	South Africa
24.9	75.1	18.3	81.7	6.6	69.0	31.0	58.0	42.0	11.1	Swaziland
38.8	61.2	28.1	71.9	10.8	40.7	59.3	35.1	64.9	5.6	Tanzania, United Republic of
40.0	60.0	30.6	69.4	9.4	46.5	53.5	43.9	56.1	2.7	Uganda
41.4	58.6	22.8	77.2	18.5	58.1	41.9	49.0	51.0	9.1	Zambia
29.6	70.4	20.2	79.8	9.4	55.0	45.0	46.9	53.1	8.1	Zimbabwe

TABLE A4. DISTRIBUTION OF PRIMARY SCHOOL-AGE POPULATION AND OUT-OF-SCHOOL CHILDREN BY

Country or territory	Children out of school by sex					Children out of school by place of residence				
	As \% of primary school-age population		As \% of total out-of-school children		\% point difference in female share of total and out- of-school populations	As \% of primary school-age population		As \% of total out-of-school children		\% point difference in rural share of total and out-ofschool populations
	Male	Female	Male	Female		Urban	Rural	Urban	Rural	
West and Central Africa										
Benin	51.5	48.5	43.8	56.2	7.7	32.1	67.9	23.1	76.9	9.1
Burkina Faso	50.9	49.1	47.5	52.5	3.4	12.7	87.3	4.7	95.3	8.0
Cameroon	51.4	48.6	47.6	52.4	3.8	32.5	67.5	17.9	82.1	14.6
Central African Republic	51.6	48.4	48.3	51.7	3.3	37.7	62.3	25.9	74.1	11.8
Chad	50.2	49.8	44.8	55.2	5.3	22.7	77.3	16.7	83.3	6.0
Democratic Republic of the Congo	49.4	50.6	46.2	53.8	3.2	29.6	70.4	17.4	82.6	12.2
Côte d'Ivoire	53.2	46.8	47.8	52.2	5.4	46.4	53.6	35.0	65.0	11.4
Equatorial Guinea	51.2	48.8	51.7	48.3	-0.6	43.6	56.4	28.8	71.2	14.8
Gabon	48.7	51.3	48.1	51.9	0.6	71.5	28.5	65.1	34.9	6.4
Gambia	49.8	50.2	47.2	52.8	2.5	34.3	65.7	24.9	75.1	9.4
Ghana	51.5	48.5	51.4	48.6	0.1	27.4	72.6	15.2	84.8	12.2
Guinea	50.0	50.0	44.9	55.1	5.1	28.8	71.2	14.0	86.0	14.8
Guinea-Bissau	50.5	49.5	47.8	52.2	2.7	37.1	62.9	18.9	81.1	18.3
Mali	49.0	51.0	44.3	55.7	4.7	23.5	76.5	13.0	87.0	10.4
Mauritania	51.2	48.8	49.6	50.4	1.6	37.3	62.7	27.4	72.6	9.9
Niger	50.1	49.9	46.1	53.9	4.0	15.5	84.5	7.2	92.8	8.3
Nigeria	50.8	49.2	46.0	54.0	4.8	32.3	67.7	23.5	76.5	8.8
Sao Tome and Principe	51.0	49.0	52.2	47.8	-1.2	46.4	53.6	44.9	55.1	1.5
Senegal	50.2	49.8	47.1	52.9	3.1	36.2	63.8	22.4	77.6	13.9
Sierra Leone	50.7	49.3	49.1	50.9	1.6	26.6	73.4	17.3	82.7	9.3
Togo	50.9	49.1	45.1	54.9	5.8	29.6	70.4	16.0	84.0	13.5
South Asia										
Bangladesh	50.1	49.9	52.3	47.7	-2.2	16.5	83.5	16.2	83.8	0.3
India	51.4	48.6	43.8	56.2	7.6	23.3	76.7	16.1	83.9	7.3
Nepal	51.7	48.3	44.2	55.8	7.5	10.1	89.9	9.0	91.0	1.1
Pakistan	50.3	49.7	44.0	56.0	6.3	28.9	71.1	18.6	81.4	10.3
East Asia and the Pacific										
Cambodia	50.4	49.6	49.6	50.4	0.8	13.3	86.7	10.1	89.9	3.2
Indonesia	52.1	47.9	55.5	44.5	-3.4	44.7	55.3	31.9	68.1	12.8
Lao People's Democratic Republic	51.1	48.9	47.9	52.1	3.2	28.0	72.0	13.3	86.7	14.7
Mongolia	50.4	49.6	51.5	48.5	-1.1	42.6	57.4	33.5	66.5	9.1
Myanmar	51.0	49.0	51.1	48.9	-0.1	21.0	79.0	10.1	89.9	10.9
Philippines	51.4	48.6	54.7	45.3	-3.4	51.9	48.1	43.4	56.6	8.5
Viet Nam	52.0	48.0	50.4	49.6	1.6	17.8	82.2	9.7	90.3	8.1
Latin America and the Caribbean										
Bolivia	50.0	50.0	45.0	55.0	5.1	59.2	40.8	46.1	53.9	13.0
Brazil	50.3	49.7	50.4	49.6	-0.1	75.1	24.9	54.2	45.8	21.0
Colombia	50.4	49.6	53.5	46.5	-3.1	67.5	32.5	57.0	43.0	10.5
Dominican Republic	51.1	48.9	56.8	43.2	-5.7	56.6	43.4	59.4	40.6	-2.8
Guatemala	51.4	48.6	47.0	53.0	4.5	37.5	62.5	33.0	67.0	4.5
Guyana	51.1	48.9	58.1	41.9	-7.0	27.6	72.4	16.9	83.1	10.7
Haiti	50.1	49.9	52.5	47.5	-2.4	30.6	69.4	19.4	80.6	11.2

Table A4. Distribution of primary school-age population and out-of-school children by background characteristics

BACKGROUND CHARACTERISTICS

Children out of school by household wealth					Children out of school by mother's education					Country or territory
As \% of primary school-age population		As \% of total out-of-school children		\% point difference in poorest share of total and out-of-school populations	As \% of primary school-age population		As \% of total out-of-school children		\% point difference in share of children with a mother with no education of total and out-of-school populations	
Richest 40\%	Poorest 60\%	Richest 40\%	Poorest 60\%		Mother with education	Mother with no education	Mother with education	Mother with no education		
										West and Central Africa
37.5	62.5	22.4	77.6	15.2	14.5	85.5	6.3	93.7	8.3	Benin
38.4	61.6	30.1	69.9	8.4	9.7	90.3	5.1	94.9	4.6	Burkina Faso
38.8	61.2	16.9	83.1	21.9	55.9	44.1	24.5	75.5	31.4	Cameroon
38.6	61.4	26.7	73.3	11.9	39.3	60.7	28.0	72.0	11.2	Central African Republic
38.2	61.8	31.3	68.7	6.9	15.4	84.6	8.4	91.6	7.0	Chad
39.0	61.0	25.4	74.6	13.7	65.7	34.3	53.1	46.9	12.6	Democratic Republic of the Congo
35.7	64.3	20.8	79.2	15.0	13.3	86.7	3.9	96.1	9.3	Côte d'Ivoire
38.3	61.7	29.7	70.3	8.6	72.1	27.9	68.0	32.0	4.0	Equatorial Guinea
38.7	61.3	25.3	74.7	13.3	59.8	40.2	53.3	46.7	6.4	Gabon
30.2	69.8	19.1	80.9	11.1	12.8	87.2	7.6	92.4	5.2	Gambia
35.0	65.0	16.9	83.1	18.2	38.1	61.9	20.2	79.8	17.9	Ghana
40.3	59.7	23.7	76.3	16.6	8.9	91.1	3.4	96.6	5.5	Guinea
40.9	59.1	24.8	75.2	16.1	16.9	83.1	6.3	93.7	10.6	Guinea-Bissau
37.4	62.6	26.4	73.6	11.0	17.8	82.2	8.9	91.1	8.9	Mali
34.5	65.5	25.1	74.9	9.4	23.1	76.9	16.8	83.2	6.3	Mauritania
41.1	58.9	33.2	66.8	7.9	10.1	89.9	4.8	95.2	5.3	Niger
36.8	63.2	18.0	82.0	18.8	33.2	66.8	16.2	83.8	17.0	Nigeria
39.3	60.7	30.1	69.9	9.2	71.6	28.4	65.3	34.7	6.3	Sao Tome and Principe
37.3	62.7	22.6	77.4	14.8	18.6	81.4	7.3	92.7	11.3	Senegal
38.6	61.4	28.0	72.0	10.6	17.6	82.4	9.2	90.8	8.3	Sierra Leone
34.3	65.7	19.6	80.4	14.7	27.9	72.1	15.1	84.9	12.9	Togo
										South Asia
33.6	66.4	19.4	80.6	14.2	55.0	45.0	39.3	60.7	15.7	Bangladesh
34.7	65.3	20.6	79.4	14.1	34.9	65.1	13.8	86.2	21.1	India
35.8	64.2	31.1	68.9	4.7	39.1	60.9	25.2	74.8	13.8	Nepal
...	44.7	55.3	30.4	69.6	14.3	Pakistan
										East Asia and the Pacific
36.7	63.3	21.8	78.2	14.9	59.0	41.0	49.2	50.8	9.8	Cambodia
37.0	63.0	17.4	82.6	19.7	83.4	16.6	71.3	28.7	12.1	Indonesia
36.8	63.2	19.2	80.8	17.6	54.5	45.5	36.8	63.2	17.7	Lao People's Democratic Republic
38.1	61.9	24.3	75.7	13.9	97.9	2.1	94.2	5.8	3.7	Mongolia
33.4	66.6	18.5	81.5	14.9	\ldots	\ldots	\ldots	Myanmar
36.5	63.5	23.1	76.9	13.4	95.3	4.7	87.8	12.2	7.5	Philippines
31.9	68.1	17.8	82.2	14.1	87.1	12.9	69.8	30.2	17.3	Viet Nam
										Latin America and the Caribbean
32.4	67.6	18.7	81.3	13.7	82.9	17.1	71.1	28.9	11.8	Bolivia
...	\ldots	\ldots	...	Brazil
33.0	67.0	15.1	84.9	18.0	81.3	18.7	66.0	34.0	15.3	Colombia
37.4	62.6	20.1	79.9	17.2	90.9	9.1	82.1	17.9	8.8	Dominican Republic
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	Guatemala
31.6	68.4	16.6	83.4	15.0	97.2	2.8	91.1	8.9	6.1	Guyana
34.4	65.6	21.4	78.6	13.1	33.4	66.6	22.0	78.0	11.4	Haiti

TABLE A4. DISTRIBUTION OF PRIMARY SCHOOL-AGE POPULATION AND OUT-OF-SCHOOL CHILDREN BY

Country or territory	Children out of school by sex					Children out of school by place of residence				
	As \% of primary school-age population		As \% of total out-of-school children		\% point difference in female share of total and out-of-school populations	As \% of primary school-age population		As \% of total out-of-school children		\% point difference in rural share of total and out-ofschool populations
	Male	Female	Male	Female		Urban	Rural	Urban	Rural	
Nicaragua	51.1	48.9	59.0	41.0	-7.9	51.9	48.1	27.5	72.5	24.4
Peru	51.0	49.0	46.5	53.5	4.5	55.0	45.0	32.3	67.7	22.7
Suriname	52.3	47.7	58.9	41.1	-6.7	44.8	55.2	14.9	85.1	29.8
Trinidad and Tobago	50.2	49.8	54.5	45.5	-4.4	\ldots
Venezuela	49.9	50.1	57.4	42.6	-7.4	\ldots
Regional averages (survey countries)										
Central/Eastern Europe, CIS	50.7	49.3	48.7	51.3	2.0	34.4	65.6	27.2	72.8	7.1
Middle East and North Africa	50.8	49.2	43.5	56.5	7.4	47.0	53.0	30.4	69.6	16.6
Eastern and Southern Africa	50.1	49.9	50.2	49.8	-0.1	22.5	77.5	13.1	86.9	9.5
West and Central Africa	50.7	49.3	46.4	53.6	4.2	30.6	69.4	19.2	80.8	11.4
South Asia	51.1	48.9	44.6	55.4	6.5	23.0	77.0	16.5	83.5	6.6
East Asia and Pacific	51.7	48.3	52.7	47.3	-1.0	37.8	62.2	24.9	75.1	12.9
Latin America and Caribbean	50.5	49.5	51.6	48.4	-1.1	64.8	35.2	39.6	60.4	25.2
Total survey countries	50.9	49.1	46.9	53.1	4.0	31.1	68.9	18.4	81.6	12.6

Table A4. Distribution of primary school-age population and out-of-school children by background characteristics

BACKGROUND CHARACTERISTICS

Children out of school by household wealth					Children out of school by mother's education					Country or territory
As \% of primary school-age population		As \% of total out-of-school children		\% point difference in poorest share of total and out-of-school populations	As \% of primary school-age population		As \% of total out-of-school children		\% point difference in share of children with a mother with no education of total and out-of-school populations	
Richest 40\%	Poorest 60\%	Richest 40\%	Poorest 60\%		Mother with education	Mother with no education	Mother with education	Mother with no education		
32.6	67.4	9.3	90.7	23.3	61.5	38.5	37.6	62.4	23.9	Nicaragua
28.7	71.3	10.5	89.5	18.2	77.6	22.4	54.7	45.3	22.9	Peru
32.8	67.2	12.3	87.7	20.5	76.7	23.3	42.9	57.1	33.8	Suriname
31.7	68.3	38.6	61.4	-6.9	93.1	6.9	86.4	13.6	6.7	Trinidad and Tobago
31.4	68.6	8.4	91.6	23.0	92.4	7.6	71.8	28.2	20.6	Venezuela
										Regional Averages (survey countries)
35.8	64.2	31.7	68.3	4.2	97.6	2.4	98.7	1.3	-1.1	Central/Eastern Europe, CIS
38.8	61.2	20.5	79.5	18.3	40.8	59.2	19.6	80.4	21.2	Middle East and North Africa
36.5	63.5	26.7	73.3	9.8	42.1	57.9	26.4	73.6	15.7	Eastern and Southern Africa
37.5	62.5	22.8	77.2	14.7	34.3	65.7	19.5	80.5	14.8	West and Central Africa
34.6	65.4	20.8	79.2	13.8	38.5	61.5	20.0	80.0	18.5	South Asia
35.7	64.3	20.0	80.0	15.7	85.4	14.6	72.5	27.5	12.9	East Asia and Pacific
32.1	67.9	16.0	84.0	16.1	79.0	21.0	48.9	51.1	30.1	Latin America and Caribbean
35.7	64.3	22.6	77.4	13.1	48.0	52.0	25.4	74.6	22.6	Total survey countries

Note:
... Missing value.

TABLE A5. NET EFFECTS OF CHILDREN'S BACKGROUND CHARACTERISTICS ON PRIMARY SCHOOL

Country or territory	Survey, year	Survey		Odds ratios		
		Number of observations	Net attendance rate (\%)	Age	Male	Urban
Central and Eastern Europe / Commonwealth of Independent States (CIS)						
Armenia	DHS 2000	1376	97.0	7.108** (4.65)	0.748 (0.85)	2.970* (2.32)
Azerbaijan	MICS 2000	2417	90.9	3.105** (9.82)	1.039 (0.25)	0.913 (0.38)
Kazakhstan	DHS 1999	1655	98.5	1.018 (0.09)	0.741 (0.57)	1.854 (1.11)
Tajikistan	MICS 2000	2879	80.7	5.329** (13.66)	0.919 (0.80)	0.726 (1.37)
Turkey	DHS 1998	4647	74.8	2.086** (18.25)	1.377** (3.55)	0.762 (1.93)
Uzbekistan	MICS 2000	3093	80.3	5.150** (8.95)	0.956 (0.44)	1.229 (1.05)
Middle East and North Africa						
Egypt	DHS 2000	10563	85.6	1.943** (20.98)	1.503** (5.75)	0.726** (2.83)
Iraq	MICS 2000	16978	77.8	1.028 (1.78)	2.285** (14.98)	1.645** (5.62)
Sudan	MICS 2000	27114	52.6	1.676** (30.02)	1.137** (3.25)	1.474** (3.86)
Yemen	DHS 1997	15203	54.6	1.598** (27.87)	4.379** (21.36)	1.499** (3.29)
Eastern and Southern Africa						
Angola	MICS 2000	3615	58.0	1.836** (17.46)	0.994 (0.07)	1.062 (0.50)
Botswana	MICS 2000	4966	84.2	2.075** (15.26)	0.803* (2.10)	1.082 (0.58)
Burundi	MICS 2000	3909	46.7	1.334** (13.74)	1.319** (3.73)	1.586 (1.51)
Comoros	MICS 2000	4740	30.8	1.272** (10.83)	0.982 (0.26)	1.565* (2.29)
Eritrea	DHS 2002	6735	63.3	1.852** (21.66)	1.219** (2.98)	1.180 (0.85)
Ethiopia	DHS 2000	11431	30.6	1.373** (15.30)	1.478** (5.12)	3.279** (6.03)
Kenya	MICS 2000	9998	72.4	1.704** (19.23)	0.846** (2.65)	0.657 (1.80)
Lesotho	MICS 2000	5833	65.4	1.730** (29.36)	0.644** (6.82)	0.761* (2.53)
Madagascar	MICS 2000	4335	62.3	1.350** (8.81)	0.861 (1.93)	1.429* (2.12)
Malawi	DHS 2000	11118	75.7	1.639** (25.60)	0.815** (3.40)	1.596** (4.17)
Mozambique	DHS 1997	6593	49.9	1.524** (7.99)	1.334** (2.99)	2.146** (3.12)
Namibia	DHS 2000	6091	78.1	1.922** (13.13)	0.942 (0.75)	0.904 (0.53)
Rwanda	MICS 2000	3506	75.2	1.105** (3.57)	1.006 (0.07)	1.633* (2.28)
Somalia	MICS 2000	4599	10.9	1.264** (9.13)	1.222 (1.88)	0.853 (0.60)
South Africa	DHS 1998	10135	93.5	1.139** (5.33)	0.807* (2.33)	1.024 (0.16)
Swaziland	MICS 2000	5133	71.5	1.397** (16.94)	1.015 (0.23)	0.774 (1.63)
Tanzania	DHS 1999	3768	48.9	1.722** (18.37)	0.835 (1.42)	1.159 (0.77)
Uganda	DHS 2000/01	8111	78.9	1.922** (19.85)	0.947 (0.73)	0.737* (2.03)
Zambia	DHS 2001/02	7683	68.0	1.425** (17.98)	1.017 (0.30)	0.727* (2.23)
Zimbabwe	DHS 1999	5724	85.5	2.122** (17.25)	0.888 (1.23)	0.722 (1.21)
West and Central Africa						
Benin	DHS 2001	5664	54.1	1.396** (17.33)	2.083** (11.94)	1.194 (1.44)
Burkina Faso	DHS 1998/99	6098	27.7	0.978 (1.11)	1.974** (8.46)	4.123** (6.47)
Cameroon	MICS 2000	4297	74.5	1.505** (11.39)	1.281** (2.60)	0.956 (0.19)
Central African Republic	MICS 2000	19344	43.1	1.402** (20.68)	1.480** (6.65)	1.765** (6.10)
Chad	MICS 2000	5653	39.3	1.384** (10.35)	1.831** (8.18)	1.500* (2.47)
Congo (DR)	MICS 2000	9692	51.6	1.495** (24.06)	1.362** (6.29)	1.429** (2.94)
Cote d'Ivoire	MICS 2000	10161	57.8	1.261** (15.21)	1.621** (10.55)	1.010 (0.10)
Equatorial Guinea	MICS 2000	2911	61.7	1.537** (11.98)	0.930 (0.82)	2.620** (7.60)
Gabon	DHS 2000/01	5168	93.9	1.870** (9.78)	1.009 (0.06)	0.854 (0.78)

PARTICIPATION

TABLE A5. NET EFFECTS OF CHILDREN'S BACKGROUND CHARACTERISTICS ON PRIMARY SCHOOL

Country or territory	Survey, year	Survey		Odds ratios		
		Number of observations	$\begin{aligned} & \text { Net } \\ & \text { attendance } \\ & \text { rate (\%) } \end{aligned}$	Age	Male	Urban
Gambia	MICS 2000	5294	52.7	1.296** (11.99)	1.322** (3.30)	1.328 (1.60)
Ghana	DHS 1998/99	4029	75.1	1.306** (10.03)	1.023 (0.29)	0.959 (0.23)
Guinea	DHS 1999	6525	39.6	1.228** (11.19)	2.150** (11.87)	1.774** (4.43)
Guinea-Bissau	MICS 2000	5923	41.3	1.292** (12.40)	1.561** (5.81)	3.404** (7.72)
Mali	DHS 2001	12206	39.2	1.054** (2.89)	1.781** (8.82)	1.861** (4.37)
Mauritania	DHS 2000/01	6672	44.2	1.541** (19.44)	1.169* (2.21)	1.602** (3.11)
Niger	MICS 2000	4634	30.3	1.061* (2.53)	1.921** (7.34)	2.799** (5.41)
Nigeria	DHS 2003	5807	61.9	1.501** (15.03)	1.551** (4.78)	0.766 (1.75)
Sao Tome and Principe	MICS 2000	2389	77.9	1.233** (6.22)	0.922 (0.83)	0.891 (0.76)
Senegal	MICS 2000	11080	48.4	1.069** (5.28)	1.338** (4.67)	1.522 (1.95)
Sierra Leone	MICS 2000	4337	40.9	1.077** (3.64)	1.221** (2.76)	1.671** (3.16)
Togo	MICS 2000	4922	63.5	1.457** (14.78)	1.571** (5.75)	1.748** (4.18)
South Asia						
Bangladesh	DHS 1999/00	6722	79.3	1.243** (8.33)	0.920 (1.18)	0.592** (4.17)
India	MICS 2000	70640	76.9	1.242** (17.85)	1.517** (11.64)	0.933 (0.85)
Nepal	MICS 2000	8262	66.2	1.406** (12.00)	1.633** (7.81)	0.907 (0.27)
East Asia and the Pacific						
Cambodia	DHS 2000	13016	65.3	2.077** (36.53)	1.039 (0.76)	0.860 (1.57)
Indonesia	DHS 2002/03	19299	94.4	1.018 (0.54)	0.871 (1.35)	0.856 (0.78)
Lao PDR	MICS 2000	6088	62.1	1.817** (25.68)	1.227** (2.96)	1.898** (3.96)
Mongolia	MICS 2000	2750	79.2	3.115** (14.76)	0.914 (0.81)	0.883 (0.67)
Philippines	MICS 1999	5429	81.9	2.646** (16.09)	0.822* (2.48)	1.105 (0.81)
Viet Nam	MICS 2000	4612	87.6	2.281** (10.69)	1.066 (0.49)	1.310 (1.22)
Latin America and the Caribbean						
Bolivia	MICS 2000	3191	91.7	2.783** (9.77)	1.258 (1.59)	0.838 (0.80)
Colombia	DHS 2000	4998	92.5	1.765** (10.29)	0.873 (1.15)	0.594* (2.48)
Dominican Republic	MICS 2000	2657	92.4	1.456** (5.79)	0.757 (1.67)	0.360** (3.61)
Guyana	MICS 2000	2920	96.5	1.357** (3.43)	0.7640 .95	1.397 (0.77)
Haiti	DHS 2000	7879	54.4	1.777** (15.21)	0.848* (2.15)	1.196 (1.10)
Nicaragua	DHS 2001	10747	80.4	1.147** (7.51)	0.632** (7.60)	1.006 (0.05)
Peru	DHS 2000	19682	95.5	1.506** (11.85)	1.188* (2.08)	0.971 (0.19)
Suriname	MICS 2000	2073	89.5	1.297** (4.13)	0.742* (2.00)	2.952** (4.32)

PARTICIPATION

Odds ratios								Country or territory
Second wealth quintile	Third wealth quintile	Fourth wealth quintile		Richest wealth quintile		Mother has formal education		
1.515** (2.61)	1.531* (2.12)	2.337**	(3.43)	4.111**	(6.77)	1.925**	(4.14)	Gambia
1.398* (2.34)	2.256** (4.94)	3.671**	(6.15)	4.789**	(6.57)	2.641**	(7.68)	Ghana
1.275 (1.76)	2.441** (6.37)	4.413**	(9.75)	11.221**	(13.99)	2.943**	(9.39)	Guinea
1.200 (1.25)	1.289 (1.54)	2.171**	(4.59)	3.251**	(5.93)	2.968**	(9.11)	Guinea-Bissau
1.084 (0.73)	1.213 (1.96)	1.681**	(4.56)	3.663**	(7.03)	2.987**	(11.98)	Mali
1.203 (1.07)	1.558** (3.08)	1.956**	(3.41)	3.209**	(6.05)	1.481**	(4.06)	Mauritania
1.229 (0.87)	1.193 (0.86)	1.286	(1.30)	3.251**	(4.98)	3.056**	(7.67)	Niger
1.438** (2.65)	2.431** (4.64)	4.621**	(7.92)	8.894**	(10.83)	3.181**	(9.69)	Nigeria
1.015 (0.10)	1.404 (1.85)	1.529*	(1.99)	2.109**	(3.61)	1.385*	(2.32)	Sao Tome and Principe
1.101 (1.04)	1.393** (2.68)	2.293**	(3.99)	3.082**	(4.72)	3.327**	(11.51)	Senegal
1.151 (0.87)	1.558** (2.84)	1.964**	(4.04)	3.166**	(5.71)	2.750**	(7.89)	Sierra Leone
1.293* (2.08)	1.771** (3.68)	2.220**	(4.96)	4.039**	(6.58)	2.288**	(7.52)	Togo
								South Asia
1.901** (6.67)	2.552** (8.83)	4.357**	(10.98)	3.729**	(8.18)	1.557**	(5.58)	Bangladesh
1.087 (1.35)	1.759** (8.21)	1.956**	(7.59)	2.584**	(10.53)	3.646**	(26.22)	India
1.275 (1.66)	1.383* (2.26)	1.321	(1.71)	1.675*	(2.46)	2.562**	(8.61)	Nepal
								East Asia and the Pacific
1.454** (4.20)	2.357** (8.90)	3.393**	(12.69)	8.239**	(20.16)	1.926**	(9.88)	Cambodia
2.164** (5.09)	2.897** (5.14)	3.894**	(3.96)	6.305**	(6.80)	1.771**	(4.63)	Indonesia
1.563** (3.02)	2.342** (6.42)	3.337**	(7.99)	5.615**	(9.81)	2.446**	(9.15)	Lao PDR
1.200 (1.09)	1.515* (2.15)	2.531**	(4.73)	4.899**	(5.82)	6.022**	(4.86)	Mongolia
1.950** (5.15)	2.369** (5.84)	3.457**	(8.01)	3.654**	(7.95)	5.577**	(5.70)	Philippines
1.356 (1.61)	1.852** (3.27)	2.384**	(3.75)	2.238**	(3.09)	3.265**	(5.05)	Viet Nam
								Latin America and the Caribbean
1.517* (2.02)	2.459** (3.50)	2.978**	(3.82)	3.723**	(3.47)	2.116**	(3.73)	Bolivia
2.182** (4.06)	2.663** (3.90)	5.470**	(5.87)	6.562**	(5.85)	2.398**	(6.53)	Colombia
1.357 (1.37)	6.242** (5.43)	5.910**	(4.62)	6.683**	(3.69)	2.054**	(2.69)	Dominican Republic
1.673 (1.62)	1.367 (0.89)	2.330	(1.86)	3.102*	(2.43)	3.596**	(3.53)	Guyana
1.798** (4.42)	2.633** (4.88)	3.282**	(5.77)	5.396**	(6.98)	2.676**	(9.73)	Haiti
2.536** (7.91)	4.041** (10.00)	8.388**	(10.47)	11.380**	(9.18)	2.293**	(11.02)	Nicaragua
2.032** (5.97)	2.564** (4.88)	3.732**	(4.92)	7.763**	(5.78)	2.592**	(8.95)	Peru
0.870 (0.43)	1.775 (1.60)	1.560	(1.23)	2.399*	(2.03)	3.673**	(5.67)	Suriname

Notes:

[^14]TABLE A6. PATTERNS OF SCHOOL ATTENDANCE IN INDIA, 2000

	Primary school-age children (6-10 years) (\%)												
	In school										Out of school		
	Total in school	Pre-primary	Primary	Secondary	Tertiary	Nonstandard	None	In time	Underage	Overage	Total out of school	Left school	Never in school
Male	80.3	4.5	76.3	4.0	0.0	1.1	14.1	49.1	18.5	12.7	19.7	1.7	18.1
Female	73.2	3.9	69.6	3.6	0.0	1.4	21.5	44.2	17.7	11.3	26.8	1.7	25.1
Urban	84.0	4.8	78.2	5.9	0.0	1.3	9.8	51.4	24.3	8.3	16.0	1.6	14.4
Rural	74.6	4.0	71.5	3.2	0.0	1.2	20.1	45.3	16.2	13.2	25.4	1.7	23.7
Richest	90.2	5.0	82.9	7.2	0.0	0.5	4.3	56.7	27.2	6.4	9.8	0.9	8.9
Poorest	66.7	3.5	64.6	2.2	0.0	0.7	29.1	40.3	13.0	13.4	33.3	2.1	31.1
Mother has some ed.	91.6	4.8	85.4	6.2	0.0	0.2	3.3	57.5	27.7	6.5	8.4	0.7	7.7
Mother has no ed.	70.0	3.9	67.3	2.6	0.0	1.7	24.5	41.8	13.6	14.6	30.0	2.0	28.0
Total	76.8	4.2	73.0	3.8	0.0	1.2	17.7	46.7	18.1	12.0	23.2	1.7	21.5

	Secondary school-age children (11-17 years) (\%)												
	In school										Out of school		
	Total in school	Pre-primary	Primary	Secondary	Tertiary	Nonstandard	None	In time	Underage	Overage	Total out of school	Left school	Never in school
Male	80.3	0.2	25.8	54.5	0.0	0.4	19.1	39.5	13.5	27.3	19.7	9.9	9.8
Female	65.2	0.1	18.8	46.4	0.0	0.9	33.8	33.2	12.5	19.5	34.8	12.3	22.5
Urban	82.9	0.1	16.7	66.3	0.0	0.4	16.6	45.5	20.1	17.3	17.1	9.1	7.9
Rural	69.1	0.2	24.4	44.7	0.0	0.7	30	33.1	10.4	25.6	30.9	11.8	19.1
Richest	92.3	0.1	13.3	79.0	0.0	0.2	7.4	52.7	26.2	13.4	7.7	4.2	3.4
Poorest	58.2	0.3	25.6	32.6	0.0	0.6	40.9	24.3	6.2	27.7	41.8	13.5	28.3
Mother has some ed.	93.7	0.1	15.0	78.7	0.0	0.1	6.1	54.4	24.7	14.7	6.3	4.7	1.6
Mother has no ed.	63.8	0.2	26.3	37.5	0.0	0.9	35.1	28.0	7.6	28.2	36.2	13.7	22.4
Total	72.8	0.2	22.3	50.4	0.0	0.6	26.5	36.4	13.0	23.4	27.2	11.1	16.1

Source: MICS.

TABLE A7. PATTERNS OF SCHOOL ATTENDANCE IN INDONESIA, 2002/03

	Primary school-age children (7-12 years) (\%)												
	In school										Out of school		
	Total in school	Pre-primary	Primary	Secondary	Tertiary	Nonstandard	None	In time	Underage	Overage	Total out of school	Left school	Never in school
Male	94.1	0.1	87.8	6.3	0.0	0.0	5.8	67.5	15.7	10.7	6.1	3.1	2.8
Female	94.8	0.2	86.9	7.9	0.1	0.0	5.0	66.1	20.2	8.4	5.3	2.4	2.7
Urban	96.0	0.0	86.7	9.4	0.0	0.0	4.0	66.4	22.1	7.2	4.2	2.2	1.7
Rural	93.2	0.2	87.9	5.2	0.0	0.0	6.6	67.2	14.4	11.6	6.9	3.2	3.6
Richest	98.0	0.0	85.5	12.5	0.0	0.0	2.0	65.4	28.7	3.9	2.0	1.0	1.0
Poorest	88.8	0.0	85.8	3.0	0.0	0.0	11.1	63.4	9.9	15.1	11.6	4.6	6.6
Mother has some ed.	95.2	0.1	87.6	7.6	0.0	0.0	4.6	67.4	19.5	8.2	4.9	2.4	2.4
Mother has no ed.	87.3	0.2	83.8	3.6	0.0	0.0	12.5	59.8	7.5	20	12.7	6.1	6.6
Total	94.4	0.1	87.3	7.1	0.0	0.0	5.4	66.8	17.9	9.6	5.7	2.8	2.8

	Secondary school-age children (13-18 years) (\%)												
	In school										Out of school		
	Total in school	Pre-primary	Primary	Secondary	Tertiary	Nonstandard	None	In time	Underage	Overage	Total out of school	Left school	Never in school
Male	60.5	0.0	6.7	53.1	0.8	0.0	39.5	40.4	6.3	13.7	39.5	38.4	1.1
Female	61.0	0.0	5.3	54.5	1.3	0.0	38.9	42.4	8.6	10.0	39.0	38.1	0.9
Urban	70.0	0.0	4.1	64.0	1.9	0.0	30.0	49.0	10.5	10.3	30.0	29.6	0.5
Rural	51.9	0.0	7.9	43.9	0.2	0.0	48.1	34.0	4.4	13.5	48.1	46.6	1.5
Richest	78.3	0.0	2.3	73.0	3.0	0.0	21.7	55.9	14.8	7.6	21.7	21.4	0.4
Poorest	39.9	0.1	10.3	29.5	0.2	0.0	60.0	23.9	2.2	13.6	60.1	57.3	2.8
Mother has some ed.	84.5	0.0	14.1	70.4	0.0	0.0	15.5	61.8	10.9	11.6	15.5	14.9	0.6
Mother has no ed.	58.5	0.1	18.9	39.7	0.0	0.0	41.3	38.0	3.5	17.0	41.5	39.1	2.4
Total	60.8	0.0	6.0	53.7	1.0	0.0	39.2	41.4	7.4	11.9	39.2	38.2	1.0

Source: DHS.

TABLE A8. PATTERNS OF SCHOOL ATTENDANCE IN MALI, 2001

	Primary school-age children (7-12 years) (\%)												
	In school										Out of school		
	Total in school	Pre-primary	Primary	Secondary	Tertiary	Nonstandard	None	In time	Underage	Overage	Total out of school	Left school	Never in school
Male	45.0	0.0	44.3	0.8	0.0	0.0	55.0	26.1	9.4	9.5	55.0	1.7	53.3
Female	33.6	0.0	32.9	0.7	0.0	0.0	66.4	19.1	7.3	7.1	66.4	1.7	64.7
Urban	66.2	0.0	63.6	2.7	0.0	0.0	33.8	36.3	21.6	8.3	33.8	1.5	32.2
Rural	30.9	0.0	30.8	0.1	0.0	0.0	69.1	18.3	4.3	8.3	69.1	1.8	67.3
Richest	74.1	0.0	70.6	3.5	0.0	0.0	25.9	38.3	28.1	7.7	25.9	1.3	24.6
Poorest	26.0	0.0	26.0	0.0	0.0	0.0	74.0	15.5	3.7	6.8	74.0	2.0	72.0
Mother has some ed.	69.2	0.0	65.4	3.8	0.0	0.0	30.8	33.1	27.4	8.8	30.8	1.7	29.0
Mother has no ed.	35.0	0.0	34.8	0.3	0.0	0.0	65.0	21.1	5.6	8.3	65.0	1.7	63.3
Total	39.2	0.0	38.5	0.7	0.0	0.0	60.8	22.6	8.4	8.3	60.8	1.7	59.1

	Secondary school-age children (13-18 years) (\%)												
	In school										Out of school		
	Total in school	Pre-primary	Primary	Secondary	Tertiary	Nonstandard	None	In time	Underage	Overage	Total out of school	Left school	Never in school
Male	36.4	0.0	21.0	15.3	0.1	0.0	63.6	9.3	1.7	25.4	63.6	8.1	55.4
Female	22.6	0.0	12.0	10.4	0.1	0.0	77.4	6.7	1.6	14.3	77.4	7.9	69.5
Urban	49.7	0.0	19.5	29.9	0.3	0.0	50.3	17.0	4.5	28.1	50.4	9.7	40.7
Rural	18.6	0.0	14.9	3.7	0.0	0.0	81.4	3.2	0.1	15.3	81.4	7.1	74.3
Richest	53.4	0.0	18.4	34.6	0.4	0.0	46.6	20.0	5.6	27.6	46.8	9.3	37.3
Poorest	14.0	0.0	12.4	1.5	0.0	0.0	86.0	2.0	0.0	12.0	86.0	6.9	79.1
Mother has some ed.	69.1	0.0	40.3	28.8	0.0	0.0	30.9	24.1	14.4	30.6	30.9	7.5	23.3
Mother has no ed.	31.6	0.0	27.6	4.0	0.0	0.0	68.4	8.5	0.5	22.5	68.4	4.7	63.7
Total	29.4	0,0	16.5	12.9	0.1	0.0	70.6	8.0	1.6	19.8	70.6	8.0	62.5

Source: DHS.

TABLE A9. PATTERNS OF SCHOOL ATTENDANCE IN NIGERIA, 2003

	Primary school-age children (12-17 years) (\%)												
	In school										Out of school		
	Total in school	Pre-primary	Primary	Secondary	Tertiary	Nonstandard	None	In time	Underage	Overage	Total out of school	Left school	Never in school
Male	65.5	4.8	63.7	1.7	0.1	0.0	29.7	37.4	9.0	19.0	34.5	1.0	33.5
Female	58.1	3.8	56.6	1.5	0.0	0.0	38.1	30.9	8.8	18.4	41.9	0.5	41.3
Urban	72.2	6.2	69.4	2.6	0.2	0.0	21.6	41.5	11.7	19.0	27.8	0.9	26.9
Rural	56.9	3.4	55.9	1.1	0.0	0.0	39.7	30.7	7.6	18.6	43.1	0.7	42.3
Richest	87.6	7.5	83.2	4.4	0.1	0.0	4.9	54.4	16.3	16.9	12.4	0.6	11.8
Poorest	41.5	2.8	40.7	0.5	0.2	0.0	55.7	21.0	3.3	17.2	58.5	0.9	57.7
Mother has some ed.	81.4	7.1	78.6	2.8	0.0	0.0	11.5	49.2	13.2	19.0	18.6	0.8	17.8
Mother has no ed.	45.9	2.4	45.1	0.7	0.1	0.0	51.7	23.3	6.0	16.6	54.1	0.7	53.4
Total	61.9	4.3	60.2	1.6	0.1	0.0	33.8	34.2	8.9	18.7	38.1	0.8	37.3

	Secondary school-age children (13-18 years) (\%)												
	In school										Out of school		
	Total in school	Pre-primary	Primary	Secondary	Tertiary	Nonstandard	None	In time	Underage	Overage	Total out of school	Left school	Never in school
Male	74.2	0.1	37.0	37.2	0.1	0.0	25.7	21.0	4.4	48.9	25.8	7.1	18.6
Female	63.0	0.1	30.6	32.3	0.2	0.0	36.8	18.0	5.5	39.5	37.0	8.9	28.1
Urban	78.7	0.0	32.4	45.9	0.3	0.0	21.3	26.8	7.9	44.0	21.3	7.4	13.9
Rural	62.9	0.2	34.5	28.3	0.0	0.0	37.0	15.4	3.2	44.3	37.1	8.3	28.8
Richest	87.5	0.0	24.3	63.0	0.2	0.0	12.5	39.8	13.1	34.7	12.5	9.0	3.5
Poorest	47.8	0.3	34.3	13.5	0.0	0.0	51.9	6.6	1.6	39.6	52.2	7.1	45.1
Mother has some ed.	94.2	0.2	48.5	45.7	0.0	0.0	5.6	36.7	11.8	45.8	5.8	2.2	3.6
Mother has no ed.	60.9	0.0	50.4	10.5	0.0	0.0	39.1	10.3	2.5	48.1	39.1	4.0	35.1
Total	68.6	0.1	33.8	34.7	0.1	0.0	31.3	19.5	4.9	44.2	31.4	8.0	23.4

Source: DHS.

TABLE A10. CHILD PROFILES BY SCHOOLING STATUS IN INDIA, 2000

Category		Children of primary school age					
		Total		In school		Out of school	
		\%	Freq.	\%	Freq.	\%	Freq.
Age	6 years	19.9	14,075	18.6	11,415	26.1	2,359
	7 years	19.7	13,969	20.1	12,348	18.2	1,644
	8 years	20.6	14,600	21.1	12,999	18.3	1,657
	9 years	16.8	11,852	17.6	10,808	12.9	1,169
	10 years	23.0	16,234	22.6	13,907	24.5	2,218
Sex	Female	48.6	34,392	46.4	28,517	59.0	5,340
	Male	51.4	36,337	53.6	32,960	41.0	3,706
Maternal status	Mother deceased	2.0	1,407	1.7	1,058	3.3	293
	Mother living	98.0	68,991	98.3	60,134	96.7	8,707
Mother's presence	Mother not in HH	7.2	5,059	7.0	4,309	7.8	703
	Mother in HH	92.8	65,545	93.0	57,071	92.2	8,315
Mother's highest	None	66.5	43,604	60.8	34,755	93.4	7,682
education level	Pre-primary	0.1	74	0.1	72	0.1	4
	Primary	10.7	7,040	12.3	7,053	3.2	264
	Secondary	19.2	12,598	22.7	12,984	2.7	221
	Tertiary	2.6	1,725	3.2	1,813	0.1	7
	Non-standard	0.8	530	0.8	485	0.6	47
Mother's literacy	Not literate	66.4	43,762	60.7	34,887	93.3	7,700
	Literate	33.6	22,140	39.3	22,574	6.7	556
Paternal status	Father deceased	2.9	2,012	2.7	1,629	3.8	342
	Father living	97.1	68,269	97.3	59,467	96.2	8,637
Father's presence	Father not in HH	11.4	8,059	11.4	6,993	11.5	1,034
	Father in HH	88.6	62,460	88.6	54,313	88.5	7,973
Father's highest	None	39.0	24,122	32.2	17,328	71.4	5,579
education level	Pre-primary	0.3	206	0.3	173	0.3	27
	Primary	15.8	9,800	16.5	8,878	12.7	994
	Secondary	37.0	22,872	41.8	22,508	14.3	1,118
	Tertiary	7.4	4,583	8.8	4,764	0.7	54
	Non-standard	0.4	267	0.4	209	0.6	46
Father's literacy	Not literate	38.7	24,234	31.9	17,409	70.8	5,608
	Literate	61.3	38,353	68.1	37,082	29.2	2,318
Household head's sex	Female	8.0	5,688	8.2	5,050	7.3	657
	Male	92.0	65,041	91.8	56,427	92.7	8,389
Household head's	None	46.3	32,207	40.3	24,379	74.4	6,627
highest education level	Pre-primary	0.4	265	0.4	225	0.4	35
	Primary	16.6	11,566	17.6	10,626	12.0	1,072
	Secondary	30.5	21,192	34.5	20,824	11.8	1,054
	Tertiary	5.6	3,881	6.7	4,026	0.6	50
	Non-standard	0.6	437	0.6	361	0.7	65
Household head's literacy	Not literate	45.9	32,383	40.0	24,511	73.9	6,663
	Literate	54.1	38,141	60.0	36,791	26.1	2,354
Location	Rural	76.7	54,224	74.4	45,753	87.1	7,881
	Urban	23.3	16,505	25.6	15,724	12.9	1,165
Religion of household	Hinduism	78.9	54,177	78.7	46,986	79.6	7,046
head	Islam	16.5	11,369	16.2	9,643	18.2	1,612
	Christianity	2.3	1,586	2.5	1,504	1.3	118

Category		Children of primary school age					
		Total		In school		Out of school	
		\%	Freq.	\%	Freq.	\%	Freq.
	Sikhism	1.3	867	1.4	849	0.5	43
	Buddhism	0.6	401	0.7	394	0.2	20
	Jainism	0.3	201	0.4	210	0.0	2
	Other	0.2	106	0.2	90	0.2	15
Caste or tribe of	Scheduled caste	20.3	13,952	19.0	11,344	26.3	2,334
household head	Scheduled tribe	8.5	5,823	7.2	4,309	14.3	1,270
	None of the above	71.2	48,927	73.8	44,016	59.3	5,252
Total		100.0	70,729	100.0	61,477	100.0	9,046

Source: MICS.

TABLE A10. CHILD PROFILES BY SCHOOLING STATUS IN INDIA, 2000

Category		Children of primary school age					
		Total		In school		Out of school	
		\%	Freq.	\%	Freq.	\%	Freq.
Household wealth	Poorest	22.7	15,932	19.5	11,943	37.3	3,358
	Second poorest	22.5	15,825	20.8	12,694	30.6	2,756
	Middle	20.1	14,147	20.9	12,784	16.4	1,473
	Second richest	19.5	13,693	21.1	12,869	12.1	1,086
	Richest	15.2	10,701	17.7	10,820	3.6	324
Child labour	Not working	89.9	63,449	92.2	56,632	79.2	7,139
	Working	10.1	7,147	7.8	4,821	20.8	1,874
Region	Andhra Pradesh	7.6	5,406	8.1	5,005	5.4	487
	Arunachal Pradesh	0.1	58	0.1	44	0.1	12
	Assam	2.7	1,877	2.6	1,625	2.7	245
	Bihar	12.8	9,064	10.1	6,220	25.5	2,306
	Goa	0.1	50	0.1	51	0.0	1
	Gujarat	4.0	2,800	4.0	2,442	3.9	355
	Haryana	1.7	1,232	1.9	1,171	1.0	87
	Himachal Pradesh	0.5	344	0.6	355	0.1	6
	Jammu \& Kashmir	0.8	592	0.9	541	0.6	54
	Karnataka	4.5	3,177	4.8	2,947	3.0	272
	Kerala	2.2	1,590	2.7	1,662	0.1	11
	Madhya Pradesh	7.6	5,371	7.4	4,532	8.7	788
	Maharashtra	6.8	4,787	7.7	4,746	2.3	205
	Manipur	0.2	121	0.2	122	0.1	5
	Meghalaya	0.3	229	0.3	199	0.3	30
	Mizoram	0.1	40	0.1	38	0.0	3
	Nagaland	0.1	91	0.1	87	0.1	6
	Orissa	3.8	2,699	3.7	2,251	4.5	405
	Punjab	1.8	1,277	2.0	1,213	1.0	87
	Rajasthan	5.8	4,072	5.7	3,527	5.8	529
	Sikkim	0.0	35	0.1	35	0.0	1
	Tamil Nadu	4.9	3,499	5.8	3,547	1.1	103
	Tripura	0.2	155	0.2	150	0.1	9
	Uttar Pradesh	22.3	15,743	21.7	13,319	25.1	2,271
	West Bengal	7.8	5,491	7.7	4,752	7.9	714
	A \& N Islands	0.0	18	0.0	18	0.0	0
	Chandigarh	0.1	41	0.1	42	0.0	1
	Dadra \& Nagar Haveli	0.0	7	0.0	6	0.0	1
	Daman \& Diu	0.0	5	0.0	5	0.0	0
	Delhi	1.2	826	1.3	795	0.6	51
	Lakshadweep	0.0	3	0.0	3	0.0	0
	Pondichery	0.0	29	0.0	29	0.0	0
Total		100.0	70,729	100.0	61,477	100.0	9,046

Source: MICS.

Table A11. Child profiles by schooling status in Indonesia, 2002/03

TABLE A11. CHILD PROFILES BY SCHOOLING STATUS IN INDONESIA, 2002/03

Category		Children of primary school age					
		Total		In school		Out of school	
		\%	Freq.	\%	Freq.	\%	Freq.
Age	7 years	16.9	3,259	16.3	2,943	29.4	329
	8 years	16.4	3,161	16.6	2,993	11.4	127
	9 years	16.3	3,143	16.7	3,022	8.1	91
	10 years	17.0	3,278	17.4	3,148	9.9	110
	11 years	15.9	3,062	16.1	2,913	11.0	123
	12 years	17.6	3,396	17.0	3,066	30.1	337
Sex	Female	47.9	9,246	48.1	8,706	43.4	485
	Male	52.1	10,053	51.9	9,378	56.6	632
Maternal status	Mother deceased	1.3	258	1.3	237	1.7	19
	Mother living	98.7	19,020	98.7	17,829	98.3	1,095
Mother's presence	Mother not in HH	7.6	1,473	7.6	1,370	8.5	95
	Mother in HH	92.4	17,825	92.4	16,713	91.5	1,022
Mother's highest	None	9.6	1,717	8.9	1,490	24.3	244
education level	Primary	58.4	10,433	58.1	9,742	64.9	650
	Secondary	28.0	5,003	28.9	4,841	10.2	102
	Tertiary	4.0	721	4.2	708	0.7	7
Paternal status	Father deceased	3.2	620	3.1	559	5.6	62
	Father living	96.8	18,628	96.9	17,481	94.4	1,048
Father's presence	Father not in HH	11.4	2,199	11.3	2,050	13.1	147
	Father in HH	88.6	17,100	88.7	16,034	86.9	970
Father's highest	None	5.7	975	5.3	843	14.7	140
education level	Primary	55.2	9,418	54.6	8,744	69.1	656
	Secondary	33.1	5,646	33.9	5,430	15.3	146
	Tertiary	6.0	1,016	6.2	1,000	0.8	8
Household head's sex	Female	6.8	1,306	6.8	1,223	7.0	78
	Male	93.2	17,993	93.2	16,861	93.0	1,039
Household head's	None	9.3	1,800	8.9	1,600	19.0	212
highest education level	Primary	54.8	10,560	54.3	9,807	65.3	729
	Secondary	30.5	5,886	31.3	5,649	14.5	162
	Tertiary	5.3	1,026	5.6	1,004	1.1	13
Location	Rural	55.3	10,680	54.6	9,882	70.2	784
	Urban	44.7	8,619	45.4	8,202	29.8	333
Region	Sumatra	22.5	4,347	22.5	4,071	22.0	246
	Java	58.2	11,235	58.7	10,614	47.5	530
	Bali \& Nusa Tenggara	5.5	1,062	5.4	975	8.2	91
	Kalimantan	5.7	1,102	5.6	1,004	9.5	106
	Sulawesi	8.1	1,553	7.9	1,420	12.9	144
Household wealth	Poorest	23.6	4,550	22.2	4,006	52.2	583
	Second poorest	20.1	3,884	20.1	3,631	21.2	237
	Middle	19.3	3,721	19.6	3,538	12.6	141
	Second richest	19.4	3,741	19.9	3,604	8.0	89
	Richest	17.6	3,403	18.3	3,305	6.0	67
Total		100.0	19,299	100.0	18,084	100.0	1,117

Source: DHS.

TABLE A12. CHILD PROFILES BY SCHOOLING STATUS IN MALI, 2001

Category		Children of primary school age					
		Total		In school		Out of school	
		\%	Freq.	\%	Freq.	\%	Freq.
Age	7 years	19.3	2,350	15.2	723	21.9	1,628
	8 years	18.8	2,290	18.9	899	18.7	1,389
	9 years	13.6	1,663	15.7	747	12.3	912
	10 years	19.0	2,320	20.3	967	18.2	1,350
	11 years	13.0	1,590	15.0	714	11.7	872
	12 years	16.3	1,993	14.9	710	17.2	1,278
Sex	Female	51.0	6,226	43.7	2,079	55.8	4,147
	Male	49.0	5,978	56.3	2,679	44.2	3,282
Maternal status	Mother deceased	3.3	398	3.0	142	3.5	257
	Mother living	96.7	11,697	97.0	4,589	96.5	7,091
Mother's presence	Mother not in HH	19.2	2,346	18.1	861	20.0	1,484
	Mother in HH	80.8	9,846	81.9	3,894	80.0	5,936
Mother's highest	None	86.2	8,358	75.9	2,897	92.9	5,457
education level	Primary	9.6	931	14.0	535	6.7	391
	Secondary	3.7	361	8.8	334	0.4	23
	Tertiary	0.5	50	1.3	50	-	-
Paternal status	Father deceased	5.0	602	4.9	232	5.0	369
	Father living	95.0	11,478	95.1	4,498	95.0	6,965
Father's presence	Father not in HH	21.8	2,656	21.4	1,016	22.1	1,638
	Father in HH	78.2	9,541	78.6	3,739	77.9	5,787
Father's highest	None	82.5	7,698	68.8	2,507	91.2	5,184
education level	Primary	8.7	810	11.8	430	6.7	379
	Secondary	6.9	648	14.6	531	2.0	113
	Tertiary	1.9	180	4.8	174	0.1	5
Household head's sex	Female	8.3	1,008	8.3	392	8.3	615
	Male	91.7	11,198	91.8	4,368	91.7	6,814
Household head's highest	None	82.0	9,914	67.9	3,184	91.1	6,721
education level	Primary	8.9	1,081	12.7	596	6.6	484
	Secondary	7.0	851	14.5	682	2.2	164
	Tertiary	2.0	244	4.9	231	0.2	11
Location	Rural	76.5	9,342	60.4	2,874	87.0	6,461
	Urban	23.5	2,864	39.6	1,886	13.0	968
Region	Kayes	13.0	1,581	11.0	521	14.3	1,060
	Koulikoro	16.7	2,037	19.0	905	15.2	1,129
	Sikasso	21.0	2,560	18.8	897	22.3	1,659
	Segou	19.9	2,425	16.1	765	22.4	1,662
	Mopti	13.6	1,663	8.0	382	17.2	1,278
	Tombouctou	2.8	347	2.0	96	3.4	250
	Gao	1.9	232	2.4	114	1.6	117
	Kidal	0.2	18	0.2	11	0.1	6
	Bamako	11.0	1,344	22.5	1,068	3.6	268
Household wealth	Poorest	21.5	2,624	14.2	677	26.2	1,943
	Second poorest	20.8	2,544	15.2	721	24.6	1,824
	Middle	20.3	2,472	16.2	772	22.9	1,699
	Second richest	20.1	2,458	21.8	1,036	19.1	1,418
	Richest	17.3	2,108	32.6	1,554	7.3	544
Child labour	Not working	61.5	7,412	71.8	3,376	54.9	4,021
	Working	38.5	4,633	28.2	1,325	45.1	3,306
Total		100.0	12,206	100.0	4,760	100.0	7,429

Source: DHS.
Note:

TABLE A13. CHILD PROFILES BY SCHOOLING STATUS IN NIGERIA, 2003

Category		Children of primary school age					
		Total		In school		Out of school	
		\%	Freq.	\%	Freq.	\%	Freq.
Age	6 years	18.4	1,070	13.5	534	28.1	514
	7 years	18.8	1,093	17.3	685	21.8	399
	8 years	18.5	1,076	19.2	759	17.2	315
	9 years	14.4	836	16.3	644	10.8	198
	10 years	18.1	1,053	19.2	758	16.3	298
	11 years	11.7	679	14.6	580	6.0	109
Sex	Female	49.2	2,854	45.9	1,819	55.6	1,019
	Male	50.9	2,953	54.1	2,141	44.4	813
Maternal status	Mother deceased	3.6	207	3.7	143	3.4	62
	Mother living	96.4	5,540	96.4	3,779	96.6	1,748
Mother's presence	Mother not in HH	21.4	1,244	22.5	891	19.3	353
	Mother in HH	78.6	4,559	77.5	3,067	80.7	1,477
Mother's highest	None	57.2	2,574	42.1	1,280	86.2	1,248
education level	Pre-primary	0.2	9	0.3	9	0.0	0
	Primary	22.5	1,014	28.7	872	10.9	158
	Secondary	16.3	731	23.2	707	2.6	38
	Tertiary	3.8	172	5.7	174	0.2	3
Mother's literacy	Not literate	63.9	2,881	51.5	1,570	87.9	1,272
	Literate	36.1	1,626	48.5	1,481	12.1	174
Paternal status	Father deceased	5.4	314	6.2	243	3.9	72
	Father living	94.6	5,453	93.8	3,694	96.1	1,743
Father's presence	Father not in HH	23.5	1,361	26.4	1,047	17.6	321
	Father in HH	76.5	4,441	73.6	2,913	82.4	1,506
Father's highest	None	47.2	2,039	30.8	883	76.5	1,106
education level	Pre-primary	0.2	6	0.1	4	0.2	2
	Primary	24.5	1,060	30.5	873	14.1	204
	Secondary	17.3	746	22.8	653	7.3	106
	Tertiary	10.9	469	15.7	451	2.0	28
Father's literacy	Not literate	46.0	1,998	32.8	942	69.8	1,015
	Literate	54.0	2,342	67.2	1,934	30.2	439
Household head's sex	Female	12.0	694	15.0	593	5.9	109
	Male	88.0	5,113	85.0	3,367	94.1	1,723
Household head's highest	None	47.7	2,743	33.8	1,328	75.5	1,363
education level	Pre-primary	0.2	9	0.1	5	0.3	4
	Primary	24.2	1,389	29.1	1,145	14.4	260
	Secondary	17.9	1,029	22.7	894	8.2	148
	Tertiary	10.1	582	14.3	560	1.7	30
Household head's literacy	Not literate	47.7	2,755	36.5	1,440	70.1	1,273
	Literate	52.3	3,021	63.5	2,505	29.9	543
Location	Rural	67.7	3,933	61.8	2,446	79.8	1,462
	Urban	32.3	1,874	38.2	1,514	20.2	370
Region	North Central	15.9	925	18.9	747	10.2	187
	North East	20.8	1,209	14.8	587	32.7	599
	North West	30.1	1,749	20.0	792	50.0	915
	South East	7.2	421	10.0	395	1.8	33
	South South	15.7	910	21.8	865	3.6	66
	South West	10.2	593	14.5	574	1.8	32

Category		Children of primary school age					
		Total		In school		Out of school	
		\%	Freq.	\%	Freq.	\%	Freq.
Native language of	Hausa	31.2	1,767	19.6	756	54.2	965
respondent	Yoruba	9.7	548	13.9	536	1.3	24
	Igbo	9.2	520	12.8	494	2.0	36
	English	0.9	50	1.3	49	0.2	3
	Other	49.0	2,772	52.5	2,028	42.2	752
Household wealth	Poorest	21.5	1,250	14.4	571	35.7	653
	Second	21.2	1,233	16.3	647	31.0	567
	Middle	20.5	1,189	20.4	806	20.8	380
	Fourth	20.0	1,162	24.9	985	10.3	189
	Richest	16.8	973	24.1	952	2.3	41
Total		100.0	5,807	100.0	3,960	100.0	1,832

[^15]TABLE A14. LIKELIHOOD TO ATTEND SCHOOL AMONG CHILDREN AGED 6-10 YEARS IN INDIA AND INDONESIA

India (MICS, 2000)			Indonesia (DHS, 2002/03)		
Variable	Marginal effect	(z-statistic)	Variable	Marginal effect	(z-statistic)
Age	0.013 **	(9.5)	Age	0	(0.2)
Male	0.059 **	(12.7)	Male	-0.006	(1.6)
Orphan (one or both parents deceased)	-0.036 **	(3.6)	Orphan (one or both parents deceased)	-0.017 *	(2.0)
Child labourer	-0.169 **	(18.3)			
Mother has primary education	0.073 **	(10.1)	Mother has primary education	0.015 **	(2.6)
Mother has secondary or tertiary education	0.094 **	(13.2)	Mother has secondary or tertiary education	0.028 **	(4.4)
Father has primary education	0.028 **	(3.0)	Father has primary education	-0.005	(0.7)
Father has secondary or tertiary education	0.071 **	(8.5)	Father has secondary or tertiary education	0.009	(1.0)
HH head has primary education	0.048 **	(5.7)	HH head has primary education	0.018 **	(2.6)
HH head has secondary or tertiary education	0.065 **	(7.6)	HH head has secondary or tertiary education	0.018 *	(2.0)
HH head male	-0.031 **	(3.5)	HH head male	-0.011	(1.5)
Number of HH members < 5 years old	-0.016 **	(6.5)	Number of HH members < 5 years old	-0.008 **	(2.9)
Number of HH members 5-59 years old	-0.001	(0.7)	Number of HH members 5-59 years old	-0.002	(1.7)
Number of HH members 60+ years old	0.019 **	(5.0)	Number of HH members $60+$ years old	0.009 *	(2.4)
HH in second poorest wealth quintile	0.020 **	(2.8)	HH in second poorest wealth quintile	0.024 **	(5.1)
HH in middle wealth quintile	0.042 **	(5.6)	HH in middle wealth quintile	0.032 **	(5.9)
HH in second richest wealth quintile	0.056 **	(6.4)	HH in second richest wealth quintile	0.037 **	(5.6)
HH in richest wealth quintile	0.077 **	(7.2)	HH in richest wealth quintile	0.036 **	(4.7)
HH head Muslim	-0.011	(1.0)			
HH head Christian	0.019	(1.2)			
HH head Sikh	0.017	(0.8)			
HH head Buddhist	-0.004	(0.1)			
HH head other religion	-0.003	(0.1)			
HH head in scheduled caste	-0.008	(1.0)			
HH head in scheduled tribe	-0.035 **	(3.0)			
Urban	-0.009	(1.2)	Urban	-0.008	(1.3)
Andhra Pradesh	0.063 **	(6.1)	Java	0.001	(0.1)
Assam	0.028 *	(2.1)	Sumatra	0.003	(0.4)
Bihar	-0.091 **	(5.6)	Kalimantan	-0.01	(1.0)
Gujarat	-0.003	(0.2)	Sulawesi	-0.017 *	(2.5)
Haryana	0.043 **	(3.6)			
Himachal Pradesh	0.089 **	(6.1)			
Jammu and Kashmir	0.045 **	(3.6)			
Karnataka	0.052 **	(3.6)			
Kerala	0.087 **	(5.9)			
Madhya Pradesh	0.008	(0.6)			
Maharashtra	0.075 **	(6.7)			
Manipur	0.081 **	(5.9)			
Meghalaya	0.031	(1.6)			
Orissa	0.008	(0.6)	Notes:		
Punjab	0.035 *	(2.1)			
Rajasthan	0.023	(1.9)	Robust \mathbf{z}-statistics in parentheses. * Significant at 5%.		
Tamil Nadu	0.101 **	(11.3)	** Significant at 1%.		
Tripura	0.070 **	(3.7)			
West Bengal	-0.002	(0.1)			
Delhi	-0.01	(0.6)			
Small states	0.048 **	(3.9)			

TABLE A15. LIKELIHOOD TO ATTEND SCHOOL AMONG CHILDREN AGED 6-10 YEARS IN MALI AND NIGERIA

Mali (DHS, 2001)			Nigeria (DHS, 2003)		
Variable	Marginal effect	(z-statistic)	Variable	Marginal effect	(z-statistic)
Age	0.017 **	(3.7)	Age	0.061 **	(11.3)
Male	0.143 **	(9.6)	Male	0.120 **	(7.4)
Orphan (one or both parents deceased)	-0.014	(0.5)	Orphan (one or both parents deceased)	-0.018	(0.6)
Child laborer	-0.116 **	(6.8)			
Mother has primary education	0.123 **	(4.6)	Mother has primary education	0.067 *	(2.3)
Mother has secondary or tertiary education	0.427 **	(7.4)	Mother has secondary or tertiary education	0.137 **	(3.9)
Father has primary education	-0.027	(0.4)	Father has primary education	0.100 **	(2.7)
Father has secondary or tertiary education	0.184 **	(3.7)	Father has secondary or tertiary education	0.107 *	(2.3)
HH head has primary education	0.177 **	(3.1)	HH head has primary education	0.058	(1.6)
HH head has secondary or tertiary education	0.207 **	(4.8)	HH head has secondary or tertiary education	0.099 *	(2.3)
HH head male	-0.01	(0.4)	HH head male	-0.094 **	(3.2)
Number of HH members <5 years old	-0.007	(1.2)	Number of HH members <5 years old	-0.001	(0.1)
Number of HH members 5-59 years old	0.005	(1.6)	Number of HH members 5-59 years old	-0.002	(0.5)
Number of HH members 60+ years old	0.014	(1.0)	Number of HH members 60+ years old	0.029	(1.5)
HH in second poorest wealth quintile	0.02	(0.8)	HH in second poorest wealth quintile	0.078 **	(3.1)
HH in middle wealth quintile	0.056 *	(2.6)	HH in middle wealth quintile	0.156 **	(5.1)
HH in second richest wealth quintile	0.104 **	(4.0)	HH in second richest wealth quintile	0.220 **	(6.4)
HH in richest wealth quintile	0.230 **	(5.3)	HH in richest wealth quintile	0.256 **	(7.0)
			Native language Hausa	-0.098 *	(2.4)
			Native language Yoruba	0.136 **	(2.8)
			Native language Igbo	0.120 **	(2.6)
			Native language English	0.077	(1.0)
Urban	0.102 **	(3.0)	Urban	0.008	(0.2)
Kayes	-0.066	(1.1)	North Central	0.149 **	(3.6)
Koulikoro	0.098 *	(2.4)	North East	-0.008	(0.2)
Segou	-0.019	(0.5)	South East	0.123 *	(2.2)
Mopti	-0.133 **	(2.9)	South South	0.228 **	(6.0)
Tombouctou	-0.145 *	(2.4)	South West	0.166 **	(3.3)
Gao	0.063	(1.1)			
Kidal	0.057	(1.1)			
Bamako	0.094	(1.9)			

Notes:
Robust z-statistics in parentheses.

* Significant at 5\%.
** Significant at 1%.

TABLE A16. SAMPLING ERRORS AND CONFIDENCE INTERVALS FOR HOUSEHOLD SURVEY DATA

Country or territory	Primary school-age children in school						Primary school-age children out of school					
	Survey		Rate (\%)	Standard error	95\% confidence interval boundaries		Rate (\%)	Standard error	95\% confidence interval boundaries		Number of observations	
			Lower		Upper	Lower			Upper			
Algeria	MICS	2000		93.5\%	1.00\%	91.5\%	95.5\%	6.5\%	1.00\%	4.5\%	8.5\%	6215
Angola	MICS	2000	58.0\%	1.28\%	55.5\%	60.5\%	42.0\%	1.28\%	39.5\%	44.5\%	3615	
Armenia	DHS	2000	97.0\%	0.50\%	96.0\%	98.0\%	3.0\%	0.50\%	2.0\%	4.0\%	1376	
Azerbaijan	MICS	2000	90.9\%	0.69\%	89.5\%	92.3\%	9.1\%	0.69\%	7.7\%	10.5\%	2417	
Bahrain	MICS	2000	86.3\%	1.49\%	83.2\%	89.3\%	13.7\%	1.49\%	10.7\%	16.8\%	976	
Bangladesh	DHS	1999/00	79.3\%	0.89\%	77.5\%	81.0\%	20.7\%	0.89\%	19.0\%	22.5\%	6722	
Benin	DHS	2001	54.1\%	1.56\%	51.0\%	57.1\%	45.9\%	1.56\%	42.9\%	49.0\%	5664	
Bolivia	MICS	2000	91.7\%	0.59\%	90.5\%	92.9\%	8.3\%	0.59\%	7.1\%	9.5\%	3191	
Bosnia And Herzegovina	MICS	2000	86.2\%	0.78\%	84.7\%	87.7\%	13.8\%	0.78\%	12.3\%	15.3\%	2058	
Botswana	MICS	2000	84.2\%	0.78\%	82.6\%	85.7\%	15.8\%	0.78\%	14.3\%	17.4\%	4966	
Brazil	DHS	1996	95.5\%	0.36\%	94.8\%	96.2\%	4.5\%	0.36\%	3.8\%	5.2\%	5204	
Burkina Faso	DHS	1998/99	27.7\%	1.43\%	24.8\%	30.5\%	72.3\%	1.43\%	69.5\%	75.2\%	6098	
Burundi	MICS	2000	46.7\%	1.41\%	43.9\%	49.4\%	53.3\%	1.41\%	50.6\%	56.1\%	3909	
Cambodia	DHS	2000	65.3\%	0.84\%	63.6\%	66.9\%	34.7\%	0.84\%	33.1\%	36.4\%	13016	
Cameroon	MICS	2000	74.5\%	2.58\%	69.4\%	79.6\%	25.5\%	2.58\%	20.4\%	30.6\%	4297	
Central African Republic	MICS	2000	43.1\%	1.14\%	40.9\%	45.4\%	56.9\%	1.14\%	54.6\%	59.1\%	19344	
Chad	MICS	2000	39.3\%	2.05\%	35.3\%	43.3\%	60.7\%	2.05\%	56.7\%	64.7\%	5653	
Colombia	DHS	2000	92.5\%	0.44\%	91.6\%	93.4\%	7.5\%	0.44\%	6.6\%	8.4\%	4998	
Comoros	MICS	2000	30.8\%	1.80\%	27.2\%	34.3\%	69.2\%	1.80\%	65.7\%	72.8\%	4740	
Congo DRC	MICS	2000	51.6\%	1.29\%	49.1\%	54.1\%	48.4\%	1.29\%	45.9\%	50.9\%	9692	
Côte d'Ivoire	MICS	2000	57.8\%	1.22\%	55.4\%	60.2\%	42.2\%	1.22\%	39.8\%	44.6\%	10161	
Dominican Republic	MICS	2000	92.4\%	0.97\%	90.5\%	94.3\%	7.6\%	0.97\%	5.7\%	9.5\%	2657	
Egypt	DHS	2000	85.6\%	0.52\%	84.5\%	86.6\%	14.4\%	0.52\%	13.4\%	15.5\%	10563	
Equatorial Guinea	MICS	2000	61.7\%	1.33\%	59.1\%	64.3\%	38.3\%	1.33\%	35.7\%	40.9\%	2911	
Eritrea	DHS	2002	63.3\%	1.53\%	60.3\%	66.3\%	36.7\%	1.53\%	33.7\%	39.7\%	6735	
Ethiopia	DHS	2000	30.6\%	1.25\%	28.2\%	33.1\%	69.4\%	1.25\%	66.9\%	71.8\%	11431	
Gabon	DHS	2000/01	93.9\%	0.49\%	92.9\%	94.9\%	6.1\%	0.49\%	5.1\%	7.1\%	5168	
Gambia	MICS	2000	52.7\%	2.41\%	48.0\%	57.5\%	47.3\%	2.41\%	42.5\%	52.0\%	5294	
Ghana	DHS	1998/99	75.1\%	1.42\%	72.3\%	77.9\%	24.9\%	1.42\%	22.1\%	27.7\%	4029	
Guatemala	DHS	1998/99	77.8\%	1.39\%	75.1\%	80.6\%	22.2\%	1.39\%	19.4\%	24.9\%	5308	
Guinea	DHS	1999	39.6\%	1.30\%	37.1\%	42.2\%	60.4\%	1.30\%	57.8\%	62.9\%	6525	
Guinea-Bissau	MICS	2000	41.3\%	1.70\%	37.9\%	44.6\%	58.7\%	1.70\%	55.4\%	62.1\%	5923	
Guyana	MICS	2000	96.5\%	0.42\%	95.7\%	97.4\%	3.5\%	0.42\%	2.6\%	4.3\%	2920	
Haiti	DHS	2000	54.4\%	1.70\%	51.0\%	57.7\%	45.6\%	1.70\%	42.3\%	49.0\%	7879	
India	MICS	2000	76.9\%	0.62\%	75.7\%	78.1\%	23.1\%	0.62\%	21.9\%	24.3\%	70640	
Indonesia	DHS	2002/03	94.4\%	0.38\%	93.7\%	95.2\%	5.6\%	0.38\%	4.8\%	6.3\%	19299	
Iraq	MICS	2000	77.8\%	0.74\%	76.4\%	79.3\%	22.2\%	0.74\%	20.7\%	23.6\%	17285	
Kazakhstan	DHS	1999	98.5\%	0.35\%	97.8\%	99.2\%	1.5\%	0.35\%	0.8\%	2.2\%	1655	
Kenya	DHS	2003	77.5\%	1.17\%	75.2\%	79.8\%	22.5\%	1.17\%	20.2\%	24.8\%	7277	
Kyrgyzstan	DHS	1997	94.9\%	1.10\%	92.8\%	97.1\%	5.1\%	1.10\%	2.9\%	7.2\%	1210	
Lao PDR	MICS	2000	62.1\%	1.61\%	58.9\%	65.3\%	37.9\%	1.61\%	34.7\%	41.1\%	6088	
Lebanon	MICS	2000	97.0\%	0.37\%	96.2\%	97.7\%	3.0\%	0.37\%	2.3\%	3.8\%	3610	
Lesotho	MICS	2000	65.4\%	0.85\%	63.7\%	67.0\%	34.6\%	0.85\%	33.0\%	36.3\%	5833	
Madagascar	MICS	2000	62.3\%	1.77\%	58.8\%	65.8\%	37.7\%	1.77\%	34.2\%	41.2\%	4335	
Malawi	DHS	2000	75.7\%	0.79\%	74.2\%	77.3\%	24.3\%	0.79\%	22.7\%	25.8\%	11118	

Country or territory	Primary school-age children in school					Primary school-age children out of school				
	Survey	Rate (\%)	Standard error	95\% confidence interval boundaries		Rate (\%)	Standard error	95\% confidence interval boundaries		Number of observations
				Lower	Upper			Lower	Upper	
Mali	DHS 2001	39.2\%	1.42\%	36.4\%	42.0\%	60.8\%	1.42\%	58.0\%	63.6\%	12206
Mauritania	DHS 2000/01	44.2\%	1.41\%	41.4\%	47.0\%	55.8\%	1.41\%	53.0\%	58.6\%	6672
Moldova	MICS 2000	98.4\%	0.30\%	97.8\%	99.0\%	1.6\%	0.30\%	1.0\%	2.2\%	2065
Mongolia	MICS 2000	79.2\%	0.98\%	77.2\%	81.1\%	20.8\%	0.98\%	18.9\%	22.8\%	2750
Mozambique	DHS 1997	49.9\%	2.47\%	45.1\%	54.8\%	50.1\%	2.47\%	45.2\%	54.9\%	6593
Myanmar	MICS 2000	79.5\%	0.84\%	77.8\%	81.1\%	20.5\%	0.84\%	18.9\%	22.2\%	15293
Namibia	2000 DHS	78.1\%	1.23\%	75.6\%	80.5\%	21.9\%	1.23\%	19.5\%	24.4\%	6091
Nepal	MICS 2000	66.2\%	2.14\%	62.0\%	70.4\%	33.8\%	2.14\%	29.6\%	38.0\%	8262
Nicaragua	DHS 2001	80.4\%	0.91\%	78.6\%	82.1\%	19.6\%	0.91\%	17.9\%	21.4\%	10747
Niger	MICS 2000	30.3\%	1.63\%	27.1\%	33.6\%	69.7\%	1.63\%	66.4\%	72.9\%	4634
Nigeria	DHS 2003	61.9\%	2.09\%	57.8\%	66.0\%	38.1\%	2.09\%	34.0\%	42.2\%	5807
Pakistan	SURVEY 2000/01	56.4\%	1.52\%	53.4\%	59.4\%	43.6\%	1.52\%	40.6\%	46.6\%	7441
Peru	DHS 2000	95.5\%	0.26\%	95.0\%	96.0\%	4.5\%	0.26\%	4.0\%	5.0\%	19682
Philippines	MICS 1999	81.9\%	0.90\%	80.1\%	83.7\%	18.1\%	0.90\%	16.3\%	19.9\%	5429
Rwanda	MICS 2000	75.2\%	1.11\%	73.1\%	77.4\%	24.8\%	1.11\%	22.6\%	26.9\%	3506
Sao Tome and Principe	MICS 2000	77.9\%	1.35\%	75.2\%	80.6\%	22.1\%	1.35\%	19.4\%	24.8\%	2389
Senegal	MICS 2000	48.4\%	1.61\%	45.2\%	51.6\%	51.6\%	1.61\%	48.4\%	54.8\%	11080
Sierra Leone	MICS 2000	40.9\%	1.70\%	37.5\%	44.3\%	59.1\%	1.70\%	55.7\%	62.5\%	4337
Somalia	MICS 1999	10.9\%	1.32\%	8.3\%	13.5\%	89.1\%	1.32\%	86.5\%	91.7\%	4599
South Africa	DHS 1998	93.5\%	0.44\%	92.6\%	94.3\%	6.5\%	0.44\%	5.7\%	7.4\%	10135
Sudan	MICS 2000	52.6\%	1.19\%	50.3\%	55.0\%	47.4\%	1.19\%	45.0\%	49.7\%	27114
Suriname	MICS 1999/00	89.5\%	2.14\%	85.3\%	93.7\%	10.5\%	2.14\%	6.3\%	14.7\%	2073
Swaziland	MICS 2000	71.5\%	0.91\%	69.7\%	73.3\%	28.5\%	0.91\%	26.7\%	30.3\%	5133
Tajikistan	MICS 2000	80.7\%	0.94\%	78.9\%	82.6\%	19.3\%	0.94\%	17.4\%	21.1\%	2879
Tanzania	1999 DHS	48.9\%	1.90\%	45.2\%	52.7\%	51.1\%	1.90\%	47.3\%	54.8\%	3768
Togo	MICS 2000	63.5\%	1.66\%	60.2\%	66.8\%	36.5\%	1.66\%	33.2\%	39.8\%	4922
Trinidad and Tobago	MICS 2000	95.5\%	0.53\%	94.5\%	96.5\%	4.5\%	0.53\%	3.5\%	5.5\%	1956
Uganda	DHS 2000/01	78.9\%	0.85\%	77.2\%	80.6\%	21.1\%	0.85\%	19.4\%	22.8\%	8111
Uzbekistan	MICS 2000	80.3\%	1.20\%	78.0\%	82.7\%	19.7\%	1.20\%	17.3\%	22.0\%	3093
Venezuela	MICS 2000	93.5\%	0.71\%	92.2\%	94.9\%	6.5\%	0.71\%	5.1\%	7.8\%	2672
Viet Nam	MICS 2000	87.6\%	0.83\%	86.0\%	89.3\%	12.4\%	0.83\%	10.7\%	14.0\%	4612
Yemen	DHS 1997	54.6\%	1.02\%	52.6\%	56.6\%	45.4\%	1.02\%	43.4\%	47.4\%	15203
Zambia	DHS 2001/02	68.0\%	1.14\%	65.8\%	70.3\%	32.0\%	1.14\%	29.7\%	34.2\%	7683
Zimbabwe	DHS 1999	85.5\%	0.69\%	84.2\%	86.9\%	14.5\%	0.69\%	13.1\%	15.8\%	5724

ANNEX 3
 Country groupings

The regions below follow UNICEF groupings of countries. Country names in italics indicate those for which data were available for the analysis in Chapter 2.

Central and East Europe / Commonwealth of Independent States (20 countries or territories)

Albania; Armenia; Azerbaijan; Belarus; Bosnia and Herzegovina; Bulgaria; Croatia; Georgia; Kazakhstan; Kyrgyzstan; Republic of Moldova; Romania; Russian Federation; Serbia and Montenegro; Tajikistan; The former Yugoslav Republic of Macedonia; Turkey; Turkmenistan; Ukraine; Uzbekistan.

Middle East and North Africa

(20 countries or territories)
Algeria; Bahrain; Djibouti; Egypt; Iran, Islamic Republic of; Iraq; Jordan; Kuwait; Lebanon; Libyan Arab Jamahiriya; Morocco; Oman; Palestinian Autonomous Territories; Qatar; Saudi Arabia; Sudan; Syrian Arab Republic; Tunisia; United Arab Emirates; Yemen.

Eastern and Southern Africa
 (22 countries or territories)

Angola; Botswana; Burundi; Comoros; Eritrea; Ethiopia; Kenya; Lesotho; Madagascar; Malawi; Mauritius; Mozambique; Namibia; Rwanda; Seychelles; Somalia; South Africa; Swaziland; Uganda; United Republic of Tanzania; Zambia; Zimbabwe.

West and Central Africa (24 countries or territories)

Benin; Burkina Faso; Cameroon; Cape Verde; Central African Republic; Chad; Congo; Côte d'Ivoire; Democratic Republic of the Congo; Equatorial Guinea; Gabon; Gambia; Ghana; Guinea; Guinea-Bissau; Liberia; Mali; Mauritania; Niger; Nigeria; Sao Tome and Principe; Senegal; Sierra Leone; Togo.

South Asia

(8 countries or territories)
Afghanistan, Islamic Republic of; Bangladesh; Bhutan; India; Maldives; Nepal; Pakistan; Sri Lanka.

East Asia and the Pacific

(30 countries or territories)

Brunei Darussalam; Cambodia; China; Cook Islands; Democratic People's Republic of Korea; Fiji; Indonesia; Kiribati; Lao People's Democratic Republic; Macao, China; Malaysia; Marshall Islands; Micronesia (Federated States of); Mongolia; Myanmar; Nauru; Niue; Palau; Papua New Guinea; Philippines; Samoa; Singapore; Solomon Islands; Thailand; Timor-Leste; Tokelau; Tonga; Tuvalu; Vanuatu; Viet Nam.

Latin America and the Caribbean (41 countries or territories)

Anguilla; Argentina; Antigua and Barbuda; Aruba; Bahamas; Barbados; Belize; Bermuda; Bolivia; Brazil; British Virgin Islands; Cayman Islands; Chile; Colombia; Costa Rica; Cuba; Dominica; Dominican Republic; Ecuador; El Salvador; Grenada; Guatemala; Guyana; Haiti; Honduras; Jamaica; Mexico; Montserrat; Netherlands Antilles; Nicaragua; Panama; Paraguay; Peru; Saint Kitts and Nevis; Saint Lucia; Saint Vincent and the Grenadines; Suriname; Trinidad and Tobago; Turks and Caicos Islands; Uruguay; Venezuela.

Industrialised countries (39 countries or territories)

Andorra; Australia; Austria; Belgium; Canada; Cyprus; Czech Republic; Denmark; Estonia; Finland; France; Germany; Greece; Hong Kong (China), SAR; Hungary; Iceland; Ireland; Israel; Italy; Japan; Latvia; Lithuania; Luxembourg; Malta; Monaco; Netherlands; New Zealand; Norway; Poland; Portugal; Republic of Korea; San Marino; Slovakia; Slovenia; Spain; Sweden; Switzerland; United Kingdom; United States.

[^0]: 1 The UNESCO-UIS/OECD/EUROSTAT data collection manual defines students enrolled as those participating, i.e. registrations are expected to be linked to pupils who are participating.

[^1]: Note: The distribution of the world's children by starting age and duration shows the distribution of countries weighted by the size of the population aged 6 to 11 years.
 Source: UNICEFIUNESCO Institute for Statistics, Statistical Table A1.

[^2]: 2 Current attendance is based on the parents' or guardians' report whether the child attended school within the week prior to the interview. It is commonly used for the calculation of net attendance rates (NAR), but its comparability across countries or with enrolment data is limited. It does not permit the distinction between children permanently out of school and those temporarily not in school, e.g. due to sickness or for reasons such as the harvest season. Since temporary absenteeism, which varies among countries and across households within countries, changes substantially within the school year, the timing of interviews can affect the rates calculated. Interviews can be conducted during holiday periods, harvest season and either early or late in the school year and lead to very different results. For example, the proportion of dropouts increases the later in the school year that the survey takes place. See also FASAF et al, 2004.

[^3]: Note: Country groupings, see Annex 3.

[^4]: Source: UNICEFIUNESCO Institute for Statistics

[^5]: Source: UNICEFIUNESCO Institute for Statistics, Table 1.1.

[^6]: Note: Data from household surveys for Bangladesh, Benin, Bosnia and Herzegovina, Cambodia, Cameroon, Central African Republic, Ethiopia, Haiti, India, Iraq, Nepal, Nigeria, Sierra
 Source: UNICEFIUNESCO Institute for Statistics, Statistical Table A1.

[^7]: Fote: For details on the methodology, see Annex 1.
 Note: For details on the methodology, see Annex 1.
 Source: UNICEFIUNESCO Institute for Statistics, Statistical Table A2.

[^8]: Note: Official primary school ages: 7 to 12 years; official secondary school ages: 13 to 18 years.
 Source: DHS, 2001

[^9]: 3 The terms "scheduled caste" and "scheduled tribe" date back to British rule of India, when the various groups of the Indian population were entered into lists or "schedules." Scheduled castes include the historically disadvantaged castes of lower rank, among them the "untouchables." Scheduled tribes are communities that live in geographic isolation from the main population, in forests and mountains. Both scheduled castes and scheduled tribes are entitled to positive discrimination according to the Indian constitution, for example in the form of quotas for university students and government positions.
 4 Child labour is work that harms children and should, therefore, be eliminated. Not all work performed by children is child labour. The definition used here comes from a joint research project, Understanding Children's Work, by ILO, UNICEF and the World Bank. The defining parameters are the child's age, type of work and number of hours spent working. Thus, the term "child labour" applies to: (a) all children aged 5 to 11 years who are economically active or do household work for 28 or more hours per week; (b) all children aged 12 to 14 years who are economically active for 14 or more hours per week (i.e. they do more than light work) or who do household work for 28 or more hours per week; and (c) all children aged 15 to 17 years who work for 43 or more hours per week (i.e. they are engaged in hazardous work). In the case of India, only definition (a) applies because the analysis is restricted to children aged 6 to 11 years.

[^10]: 5 (FASAF et al, 2004). See also: (UNESCO, 2002); (UNICEF, 2004); and (Loaiza, 2004).

[^11]: Note: The reference year is the same for both sources.
 Countries with more than 15 points difference between the two sources are labelled.
 Source: UNICEFIUNESCO Institute for Statistics; UNESCO Institute for Statistics database.

[^12]: 1) Enrolment presented here differs from those used in global and regional estimates. The latter are adjusted to match the 2001/02 school year 2) Global and regional estimates are based on non-publishable UIS enrolment estimates.
 2) Adjusted to year of administrative data.
 ** UIS estimation.

 * Secondary component is UIS estimation.
 - Magnitude nil or negligible. For \% out of school: less than 1%. For out of school: less than 1,000.
 x Secondary education cannot be reported separtely but is included in total.
 Missing value

[^13]: Note

[^14]: Robust z-statistics in parentheses.
 Logistic regression, odds ratio.

 * Significant at 5%.
 ** Significant at 1%.

[^15]: Source: DHS.

