INTERNATIONAL ASSOCIATION OF HYDROGEOLOGISTS

Climate Change Effects on Groundwater Resources

A Global Synthesis of Findings and Recommendations

Editors: Holger Treidel Jose Luis Martin-Bordes Jason J. Gurdak

INTERNATIONAL CONTRIBUTIONS TO HYDROGEOLOGY

27

Series Editor: Dr. Nick S. Robins Editor-in-Chief, IAH Book Series British Geological Survey Wallingford, UK

INTERNATIONAL ASSOCIATION OF HYDROGEOLOGISTS

Climate Change Effects on Groundwater Resources

A Global Synthesis of Findings and Recommendations

Editors

Holger Treidel & Jose Luis Martin-Bordes UNESCO, International Hydrological Programme, Paris, France

Jason J. Gurdak San Francisco State University, California, USA

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business A BALKEMA BOOK CRC Press/Balkema is an imprint of the Taylor & Francis Group, an informa business

© 2012 Taylor & Francis Group, London, UK

Typeset by MPS Limited, a Macmillan Company, Chennai, India Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY

All rights reserved. No part of this publication or the information contained herein may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, by photocopying, recording or otherwise, without written prior permission from the publishers.

Although all care is taken to ensure integrity and the quality of this publication and the information herein, no responsibility is assumed by the publishers nor the author for any damage to the property or persons as a result of operation or use of this publication and/or the information contained herein.

Library of Congress Cataloging-in-Publication Data

Climate change effects on groundwater resources : a global synthesis of findings and recommendations / editors: Holger Treidel, Jose Luis Martin-Bordes, Jason Gurdak. — 1st ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-415-68936-6 (hardback : alk. paper) 1. Groundwater. 2. Climatic changes— Environmental aspects—Case studies. I. Treidel, Holger. II. Martin-Bordes, José Luis. III. Gurdak, Jason J.

TD403.C576 2012 553.7'9—dc23

2011036931

Published by: CRC Press/Balkema P.O. Box 447, 2300 AK Leiden, The Netherlands e-mail: Pub.NL@taylorandfrancis.com www.crcpress.com – www.taylorandfrancis.com – www.balkema.nl

ISBN: 978-0-415-68936-6 (Hardback) ISBN: 978-0-203-12076-7 (e-book)

TABLE OF CONTENTS

ABOUT THE EDITORS XV ACKNOWLEDGMENTS XVII 1 Introduction 1 1.1 Rationale 1 1.2 Overview of the book 3 References 13

Tropical Climates

2	The impacts of climate change and rapid development on weathered crystalline rock aquifer systems in the humid tropics of sub-Saharan				
	•	Africa: evidence from south-western Uganda			
	Richard Taylor & Callist Tindimugaya				
	2.1	Introd	luction	17	
		2.1.1	Purpose and scope	17	
		2.1.2	Description of the study area: the River Mitano		
			Basin	18	
	2.2	Result	ts and discussion	21	
		2.2.1	Impacts of intensive groundwater abstraction	21	
		2.2.2	Impact of climate change on groundwater		
			recharge	23	
		2.2.3	Uncertainty in climate change impacts on		
			groundwater resources	26	
	2.3	2.3 Conclusions and recommendations			
	Acknowledgements			30	
	Refe	rences		30	
3	Grou	ındwate	er recharge and storage variability in southern Mali	33	
	Chris M. Henry, Harm Demon, Diana M. Allen & Dirk Kirste				
	3.1	Introd	luction	33	
		3.1.1	Purpose and scope	33	
		3.1.2	Study area description: southern Mali	34	
		3.1.3	Methodology	36	
		3.1.4	Relevance for GRAPHIC	40	

VI	Conte	nts			
	3.2	Results	s and discussion	40	
		3.2.1	Groundwater levels and storage anomalies	40	
		3.2.2	Recharge modelling	42	
	3.3	Policy	recommendations	45	
	3.4	Future	work	46	
		nowledge	ments	47	
	Refe	rences		47	
4	Grou	ındwater	r discharge as affected by land use change		
		nall catch entral Br	nments: A hydrologic and economic case study razil	49	
		rique M.L ne M. Me	Chaves, Ana Paula S. Camelo & ndes		
	4.1	Introdu	action	49	
		4.1.1		50	
		4.1.2	Description of the area: the Pipiripau river basin	50	
		4.1.3	Relevance for GRAPHIC	51	
	4.2	Metho		53	
		4.2.1	Correlating annual base flow discharge with		
			basin land use intensity	53	
		4.2.2	Obtaining basin curve-number and base flow	50	
		4.2.3	discharge from stream flow data	53	
		4.2.3	Empirical relationship between the base flow index and the normalized runoff coefficient	54	
		4.2.4	Estimating and valuing hydrological services resulting	54	
		1.2.1	from land conservation scenarios	54	
	4.3	Results	s and discussion	56	
		4.3.1	Correlation between the dry season discharge		
			and basin land use intensity	56	
		4.3.2	Base flow discharge hydrographs and basin		
			curve-number (baseline condition)	58	
		4.3.3	Hydrological services resulting from land conservation		
			scenarios	60	
	4.4	•	recommendations	61	
	4.5	Future	work	61	
	Refe	rences		61	
5	Effects of storm surges on groundwater resources,				
	North Andros Island, Bahamas				
	John Bowleg & Diana M. Allen				
	5.1	Introdu		63	
		5.1.1	Purpose and scope	63	
		5.1.2	Study area description: North Andros Island	63	
		5.1.3	Methodology	67	
		5.1.4	Relevance for GRAPHIC	68	

Contents	VII
----------	-----

	5.2	Results	s and discussion	69
		5.2.1	The well field on North Andros	69
		5.2.2	Hurricane Frances	70
		5.2.3	Consequences of the storm surge in 2004	70
	5.3	Policy	recommendations	71
	5.4	Future	work	71
	Ackn	lowledge	ments	73
	Refe	rences		73
6			oundwater vulnerability in Carbonate Island	
	coun	tries in t	he Pacific	75
	Ian V	Vhite & T	Fony Falkland	
	6.1	Introdu	action	75
		6.1.1	Purpose and scope	77
		6.1.2	Study area description: Pacific Island countries	77
		6.1.3	Methodology	77
		6.1.4	Relevance for GRAPHIC	77
	6.2	Results	s, discussion, and policy recommendations	79
		6.2.1	Characteristics of fresh groundwater lenses	79
		6.2.2	Threats to fresh groundwater	89
		6.2.3	Reducing the vulnerability of groundwater systems	96
	6.3	Future	work	103
		lowledge	ments	105
	Refe	rences		105
			Dry (Arid and Semiarid) Climates	
7			r resources increase in the Iullemmeden	112
		n, West A		113
		aume Fav 1im Baba	vreau, Yahaya Nazoumou, Marc Leblanc, Abdou Guéro & Goni	
	7.1	Introdu	action	113
		7.1.1	Purpose and scope	113
		7.1.2	Description of the study area: the Iullemmeden Basin	114
		7.1.3	Methodology	116
		7.1.4	Relevance to GRAPHIC	117
	7.2	Results	s and discussion	117
		7.2.1	Land use and land cover change	117
		7.2.2	Increased runoff and erosion	119
		7.2.3	Long-term changes in the water table	120
		7.2.4	Impacts of climate change and land use changes	
			on groundwater resources	122
	7.3	-	-relevent Recommendations	122
	7.4	Future		124
		lowledge	ments	125
	Refe	rences		125

Lhoussaine Bouchaou, Tarik Tagma, Said Boutaleb, Mohamed			
Hssaisoune & Zine El Abidine El Morjani			
8.1 Introduction			
0.1	8.1.1	Purpose and scope	
	8.1.2	Description of the study area: the Souss-Massa basin	
	8.1.3	Methodology	
	8.1.4	Relevance to GRAPHIC	
8.2	Results	s and discussion	
	8.2.1	Rainfall variation	
	8.2.2	Temperature and heat waves	
	8.2.3	Impacts on groundwater level	
	8.2.4	Impacts on groundwater quality	
8.3	Policy	recommendations	
8.4	Future	work	
Acknowledgements			
Refe	rences		

chan	ge and v	ariability, High Plains aquifer, USA	145
Jason	ı J. Gurd	ak, Peter B. McMahon & Breton W. Bruce	
9.1	Introdu	uction	145
	9.1.1	Purpose and scope	146
	9.1.2	Study area description: High Plains aquifer	146
	9.1.3	Methodology	150
	9.1.4	Relevance for GRAPHIC	151
9.2	Result	s, discussion, and policy recommendations	152
	9.2.1	Groundwater availability and sustainability	
		are a function of quantity and quality	152
	9.2.2	Conversion of rangeland to irrigated cropland	
		affects water quality	152
	9.2.3	Chemical transport to the water table follows fast	
		and slow paths	154
	9.2.4	The quality of shallow and deep groundwater	
		are substantially different	155
	9.2.5	Mixing of groundwater by high-capacity wells	
		adversely affects water quality	159
	9.2.6	Limited ability to naturally attenuate some	
		contaminants	160
	9.2.7	Interannual to multidecadal climate variability	
		affects recharge and groundwater quality	160
	9.2.8	The quality of most water produced by private,	
		public-supply, and irrigation wells is suitable	
		for the intended uses	162

		Contents IX
9.3	Future work	164
9.4	Additional information	165
Acl	nowledgements	165
Ref	erences	165
Gre	undwater change in the Murray basin from long-term	
in-s	itu monitoring and GRACE estimates	169
Ma	c Leblanc, Sarah Tweed, Guillaume Ramillien, Paul Tregoning,	
Fré	léric Frappart, Adam Fakes & Ian Cartwright	
10.	Introduction	169
	10.1.1 Purpose and scope	169
	10.1.2 Study area description	170
	10.1.3 Methodology	174
	10.1.4 Relevance to GRAPHIC	176
10.2	Results and discussion	176
	10.2.1 Long-term observations from in situ hydrographs	176
	10.2.2 GRACE observations	179
	10.2.3 Discussion	183
10.	Policy-relevant recommendations	183
10.4	Future work	185
Ack	nowledgements	185
Ref	erences	186
	Tommoroto Climotog	
	Temperate Climates	
Im	act assessment of combined climate and management scenarios	

11	Impact assessment of combined climate and management scenarios				
	on groundwater resources. The Inca-Sa Pobla hydrogeological unit (Majorca, Spain)			191	
	Lucila Candela, Wolf von Igel, F. Javier Elorza &				
	Joaqu	un Jimén	ez-Martínez		
	11.1	Introdu	ction	191	
		11.1.1	Description of the study area: the Inca-Sa Pobla		
			hydrogeological unit	192	
	11.2	Method	lology	194	
		11.2.1	Recharge estimation	194	
		11.2.2	Groundwater flow simulation model	195	
		11.2.3	Climate change scenarios. Statistical downscaling	195	
		11.2.4	Groundwater abstraction scenarios	196	
		11.2.5	Sensitivity and uncertainty analysis	197	
		11.2.6	Impact assessment by coupling climate and abstraction		
			scenarios	197	
	11.3	Results	and discussion	197	
		11.3.1	GCM and local predictions	197	
		11.3.2	Climate change impact on groundwater resources and		
			natural recharge	198	
		11.3.3	Sensitivity analysis of water abstraction spatial location	199	

Х	Contents

		11.3.4	Impact of combined climate change and management	
			scenarios on spring flow rate	199
	11.4	Conclu	sions and relevance for GRAPHIC	201
	Refer	ences		202
12	The e	effect of c	climate and anthropogenic sea level changes on Israeli	
	coast	al aquife	rs	205
	Yosep	h Yechiel	i, Uri Kafri & Eyal Shalev	
	12.1	Introdu	ction	205
		12.1.1	Description of the area: the Israeli Mediterranean and	
			the Dead Sea coastal aquifer systems	206
		12.1.2	Relevance for GRAPHIC	209
	12.2	Method	lology	210
		12.2.1	Field studies	210
		12.2.2	Numerical simulation of the Mediterranean	
			coastal aquifer system	210
		12.2.3	Numerical simulation of the Dead Sea aquifer	
			system	210
	12.3	Results	and discussion	211
		12.3.1	The Mediterranean coastal aquifer system	211
		12.3.2	The Dead Sea coastal aquifer	216
	12.4	Summa	ary and conclusion	220
	12.5	Policy 1	recommendations	222
	Ackn	owledgen	nents	223
	Refer	ences		223
13	Land	subside	nce and sea level rise threaten fresh water resources	
	in the	e coastal	groundwater system of the Rijnland water board,	
	The I	Netherlar	nds	227
	Guall	bert Oude	e Essink & Henk Kooi	
	13.1	Introdu	ction	227
	1011		Relevance for GRAPHIC	228
		13.1.2	Salinizing and freshening processes in Dutch	
			coastal aquifers	230
		13.1.3	Description of the area: the Rijnland Water Board	230
	13.2		otion of the numerical method	233
		-	Numerical code	233
		13.2.2	Scenarios of sea level rise and land subsidence	234
		13.2.3	The 3D model	234
		13.2.4	Calibration of the 3D model	238
	13.3	Results	and discussion	241
		13.3.1	Salinization of the groundwater system	241
		13.3.2	Compensating measures	243
	13.4	Conclu	sions	245
	Refer	ences		247

Contents	XI
----------	----

central region of Santa Fe Province, Argentina265Ofelia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía15.115.1Introduction26515.1.1Purpose26515.1.2Description of the area: the central region of Santa Fe Province26615.1.3Methods26815.1.4Relevance for GRAPHIC26915.2Results and discussion27115.3Policy recommendations27415.4Future work274Acknowledgements276References276Continental Climates	14	regions: case studies from British Columbia, Canada					
14.1.1 Purpose and scope 249 14.1.2 Study area description: valley-bottom aquifers in mountain regions 250 14.1.3 Methodology 253 14.1.4 Relevance for GRAPHIC 254 14.2. Results and discussion 255 14.2.1 Okanagan Basin 255 14.2.2 Grand Forks 257 14.3 Policy recommendations 260 14.4 Future work 262 Acknowledgements 263 14.4 Future work 262 Acknowledgements 265 Ofelia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía 265 15.1 Purpose 265 15.1.1 Purpose 265 15.1.2 Description of the area: the central region of Santa Fe Province 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.2 Description of the area: the central region of Santa Fe Province 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 <t< th=""><th></th></t<>							
14.1.2 Study area description: valley-bottom aquifers in mountain regions 250 14.1.3 Methodology 253 14.1.4 Relevance for GRAPHIC 254 14.2. Results and discussion 255 14.2.1 Okanagan Basin 255 14.2.2 Grand Forks 257 14.3 Policy recommendations 260 14.4 Future work 262 Acknowledgements 262 References 263 15 Possible effects of climate change on groundwater resources in the central region of Santa Fe Province, Argentina 265 0felia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía 15.1 15.1 Purpose 265 15.1.1 Purpose 266 15.1.2 Description of the area: the central region of Santa Fe Province 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.2 Results and discussion 271 15.3 Policy recommendations 274 15.4 Future work 276 Continental Climates 2		14.1 Introduction					
mountain regions 250 14.1.3 Methodology 253 14.1.4 Relevance for GRAPHIC 254 14.2. Results and discussion 255 14.2.1 Okanagan Basin 255 14.2.2 Grand Forks 257 14.3 Policy recommendations 260 14.4 Future work 262 Acknowledgements 262 References 263 15 Possible effects of climate change on groundwater resources in the central region of Santa Fe Province, Argentina 265 Ofelia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía 15.1.1 15.1.1 15.1.1 Purpose 265 15.1.2 Description of the area: the central region of Santa Fe Province 266 15.1.2 Description of the area: the central region of Santa Fe Province 266 15.1.3 Methods 15.1.4 Relevance for GRAPHIC 269 15.2 Results and discussion 271 15.3 Policy recommendations 274 15.4 Future work 274 15.4 Future work 276 276 276 <td cobsciption="" o<="" th=""><th></th><th></th><th>14.1.1</th><th>Purpose and scope</th><th>249</th></td>	<th></th> <th></th> <th>14.1.1</th> <th>Purpose and scope</th> <th>249</th>			14.1.1	Purpose and scope	249	
14.1.3 Methodology 253 14.1.4 Relevance for GRAPHIC 254 14.2. Results and discussion 255 14.2.1 Okanagan Basin 255 14.2.2 Grand Forks 257 14.3 Policy recommendations 260 14.4 Future work 262 Acknowledgements 262 References 263 15 Possible effects of climate change on groundwater resources in the central region of Santa Fe Province, Argentina 265 0felia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía 265 15.1.1 Purpose 265 15.1.2 Description of the area: the central region of Santa Fe Province 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.2 Results and discussion 274 15.3 Policy recommendations 274 15.4 Future work 274 Acknowledgements 276 276 Continental Climates 16 Impacts of drought on groundwater depletion in the Beijing 281			14.1.2	Study area description: valley-bottom aquifers in			
14.1.4 Relevance for GRAPHIC 254 14.2.1 Results and discussion 255 14.2.2 Grand Forks 257 14.3 Policy recommendations 260 14.4 Future work 262 Acknowledgements 262 References 263 15 Possible effects of climate change on groundwater resources in the central region of Santa Fe Province, Argentina 265 0felia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía 265 15.1.1 Purpose 265 15.1.2 Description of the area: the central region of Santa Fe Province 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.2 Results and discussion 271 15.3 Policy recommendations 274 15.4 Future work 274 Acknowledgements 276 Continental Climates 16 Impacts of drought on groundwater depletion in the Beijing Plain, China 281 76.1.1 Purpose and scope 281 16.1.1 Purpose and scope 281				mountain regions	250		
14.2. Results and discussion 255 14.2.1 Okanagan Basin 255 14.2.2 Grand Forks 257 14.3 Policy recommendations 260 14.4 Future work 262 Acknowledgements 262 References 263 15 Possible effects of climate change on groundwater resources in the central region of Santa Fe Province, Argentina 265 Ofelia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía 265 15.1.1 Purpose 266 15.1.2 Description of the area: the central region of Santa Fe Province 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.3 Policy recommendations 274 15.4 Future work 274 Acknowledgements 276 Continental Climates 16 Impacts of drought on groundwater depletion in the Beijing 281 Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye 281 16.1 Introduction 281 16.1.1 Purpose and scope 281 16.1.2 Description of the study area: the Beijing Plain 282 16.2.1 Detection of climate changes 286 16.2.1 Detection of t			14.1.3	Methodology	253		
14.2.1 Okanagan Basin 255 14.2.2 Grand Forks 257 14.3 Policy recommendations 260 14.4 Future work 262 Acknowledgements 262 References 263 15 Possible effects of climate change on groundwater resources in the central region of Santa Fe Province, Argentina 265 Ofelia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía 15.1 15.1 Introduction 265 15.1.1 Purpose 266 15.1.2 Description of the area: the central region of Santa Fe Province 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.2 Results and discussion 271 15.3 Policy recommendations 274 15.4 Future work 274 Acknowledgements 276 276 Continental Climates 16 Impacts of drought on groundwater depletion in the Beijing 281 Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye 281 261 16.1 Introduction 2			14.1.4	Relevance for GRAPHIC	254		
14.2.2 Grand Forks 257 14.3 Policy recommendations 260 14.4 Future work 262 Acknowledgements 263 15 Possible effects of climate change on groundwater resources in the central region of Santa Fe Province, Argentina 265 <i>Ofelia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía</i> 15.1 15.1 Introduction 265 15.1.1 Purpose 265 15.1.2 Description of the area: the central region of Santa Fe Province 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.2 Results and discussion 271 15.3 Policy recommendations 274 15.4 Future work 274 Acknowledgements 276 Continental Climates 16 Impacts of drought on groundwater depletion in the Beijing 281 Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye 281 281 16.1 Introduction 281 281 16.2.1 Description of the study area: the Beijing Plain 282		14.2.					
14.3 Policy recommendations 260 14.4 Future work 262 Acknowledgements 262 References 263 15 Possible effects of climate change on groundwater resources in the central region of Santa Fe Province, Argentina 265 Ofelia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía 15.1 15.1 Introduction 265 15.1.1 Purpose 266 15.1.2 Description of the area: the central region of Santa Fe Province 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.2 Results and discussion 271 15.3 Policy recommendations 274 15.4 Future work 274 Acknowledgements 276 Continental Climates 16 Impacts of drought on groundwater depletion in the Beijing 281 Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye 281 281 16.1 Introduction 281 281 16.2.1 Detection of climate changes 286 286 16.2.1				6			
14.4 Future work 262 Acknowledgements 262 References 263 15 Possible effects of climate change on groundwater resources in the central region of Santa Fe Province, Argentina 265 Ofelia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía 265 15.1 Introduction 265 15.1.1 Purpose 265 15.1.2 Description of the area: the central region of Santa Fe Province 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.2 Results and discussion 271 15.3 Policy recommendations 274 15.4 Future work 274 Acknowledgements 276 Continental Climates 16 Impacts of drought on groundwater depletion in the Beijing 281 Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye 281 16.1 Introduction 281 16.2.1 Description of the study area: the Beijing Plain 282 16.2.2 Constinent changes 286 16.2.1 Detection of climate changes							
Acknowledgements 262 References 263 15 Possible effects of climate change on groundwater resources in the central region of Santa Fe Province, Argentina 265 0felia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía 151 15.1 Introduction 265 15.1.1 Purpose 266 15.1.2 Description of the area: the central region of Santa Fe Province 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.2 Results and discussion 271 15.3 Policy recommendations 274 15.4 Future work 274 15.4 Future work 276 Continental Climates 16 Impacts of drought on groundwater depletion in the Beijing Plain, China 281 Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye 281 16.1 Introduction 281 16.2.1 Detection of climate changes 286 16.2.2 Continent changes 286 16.2.1 Detection of climate changes			•				
References 263 15 Possible effects of climate change on groundwater resources in the central region of Santa Fe Province, Argentina 265 Ofelia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía 15.1 15.1 Introduction 265 15.1.1 Purpose 265 15.1.2 Description of the area: the central region of Santa Fe Province 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.2 Results and discussion 271 15.3 Policy recommendations 274 15.4 Future work 274 Acknowledgements 276 276 Continental Climates 16 Impacts of drought on groundwater depletion in the Beijing 281 Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye 281 16.1 Introduction 281 16.2 Description of the study area: the Beijing Plain 282 16.1 Purpose and scope 281 16.1.1 Purpose and scope 281 16.1.2 Description of the study area: the Beijing Plain 282							
15 Possible effects of climate change on groundwater resources in the central region of Santa Fe Province, Argentina 265 0felia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía 15.1 15.1 Introduction 265 15.1.1 Purpose 265 15.1.2 Description of the area: the central region of Santa Fe Province 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.2 Results and discussion 271 15.3 Policy recommendations 274 15.4 Future work 274 Acknowledgements 276 Continental Climates 16 Impacts of drought on groundwater depletion in the Beijing Plain, China 281 Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye 281 16.1 Introduction 281 16.2.1 Description of the study area: the Beijing Plain 282 16.2.1 Detection of climate changes 286 16.2.2 Analysis of rapid decline of groundwater levels 289 16.2.3 Simulation of groundwater depletion under recent droughts 290 <td></td> <td></td> <td colspan="3">•</td>			•				
central region of Santa Fe Province, Argentina 265 Ofelia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía 15.1 15.1 Introduction 265 15.1.1 Purpose 265 15.1.2 Description of the area: the central region of Santa Fe Province 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.2 Results and discussion 271 15.3 Policy recommendations 274 15.4 Future work 274 15.4 Future work 276 Continental Climates 16 Impacts of drought on groundwater depletion in the Beijing Plain, China 281 Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye 16.1 Introduction 281 16.1.1 Purpose and scope 281 16.1.2 Description of the study area: the Beijing Plain 282 16.2 Results and discussion 286 16.2.1 Detection of climate changes 286 16.2.2 Analysis of rapid decline of groundwater levels 289 16.2.3 <t< td=""><td></td><td>Refer</td><td>ences</td><td></td><td>263</td></t<>		Refer	ences		263		
Ofelia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía 15.1 Introduction 265 15.1.1 Purpose 266 15.1.2 Description of the area: the central region of Santa Fe Province 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.2 Results and discussion 271 15.3 Policy recommendations 274 15.4 Future work 274 15.4 Future work 274 15.4 Future work 276 Continental Climates Impacts of drought on groundwater depletion in the Beijing Plain, China 281 Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye 281 16.1 Introduction 281 16.1.1 Purpose and scope 281 16.1.2 Description of the study area: the Beijing Plain 282 16.2 Results and discussion 286 16.2.1 Detection of climate changes 286 16.2.2 Analysis of rapid decline of groundwater levels 289 16.2.	15	Possi	ble effect	s of climate change on groundwater resources in the			
15.1 Introduction 265 15.1.1 Purpose 265 15.1.2 Description of the area: the central region of 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.2 Results and discussion 271 15.3 Policy recommendations 274 15.4 Future work 274 Acknowledgements 276 Continental Climates Continental Climates 16 Impacts of drought on groundwater depletion in the Beijing Plain, China 281 Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye 281 16.1 Introduction 281 16.2.1 Description of the study area: the Beijing Plain 282 16.2.2 Results and discussion 286 16.2.1 Detection of climate changes 286 16.2.2 Analysis of rapid decline of groundwater levels 289 16.2.3 Simulation of groundwater depletion under recent droughts 290		centr	al region	of Santa Fe Province, Argentina	265		
15.1.1 Purpose 265 15.1.2 Description of the area: the central region of 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.2 Results and discussion 271 15.3 Policy recommendations 274 15.4 Future work 274 Acknowledgements 276 Continental Climates 16 Mapacts of drought on groundwater depletion in the Beijing Plain, China 281 Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye 281 16.1 Introduction 281 16.1.1 Purpose and scope 281 16.1.2 Description of the study area: the Beijing Plain 282 16.2 Results and discussion 286 16.2.1 Detection of climate changes 286 16.2.2 Analysis of rapid decline of groundwater levels 289 16.2.3 Simulation of groundwater depletion under recent droughts 290		Ofelia Tujchneider, Marta Paris, Marcela Pérez & Mónica D'Elía					
15.1.2 Description of the area: the central region of 266 15.1.3 Methods 268 15.1.4 Relevance for GRAPHIC 269 15.2 Results and discussion 271 15.3 Policy recommendations 274 15.4 Future work 274 Acknowledgements 276 Continental Climates 16 Impacts of drought on groundwater depletion in the Beijing Plain, China 281 Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye 281 16.1 Introduction 281 16.2.2 Results and discussion 286 16.2.1 Detection of the study area: the Beijing Plain 282 16.2.2 Analysis of rapid decline of groundwater levels 289 16.2.3 Simulation of groundwater depletion under recent droughts 290		15.1	Introdu	ction	265		
Santa Fe Province26615.1.3Methods26815.1.4Relevance for GRAPHIC26915.2Results and discussion27115.3Policy recommendations27415.4Future work274Acknowledgements276Continental Climates281Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye16.1Introduction28116.1.1Purpose and scope28116.2.2Results and discussion28616.2.1Detection of climate changes28616.2.2Analysis of rapid decline of groundwater levels28916.2.3Simulation of groundwater depletion under recent droughts290			15.1.1	Purpose	265		
15.1.3Methods26815.1.4Relevance for GRAPHIC26915.2Results and discussion27115.3Policy recommendations27415.4Future work274Acknowledgements276Continental Climates2762762762817628116.1Introduction2817628116.1.1 <td></td> <td></td> <td>15.1.2</td> <td>Description of the area: the central region of</td> <td></td>			15.1.2	Description of the area: the central region of			
15.1.4Relevance for GRAPHIC26915.2Results and discussion27115.3Policy recommendations27415.4Future work274Acknowledgements276References276Continental Climates281Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye16.1Introduction28116.1.1Purpose and scope28116.2.2Results and discussion28616.2.1Detection of climate changes28616.2.2Analysis of rapid decline of groundwater levels28916.2.3Simulation of groundwater depletion under recent droughts290				Santa Fe Province	266		
15.2Results and discussion27115.3Policy recommendations27415.4Future work274Acknowledgements276References276Continental Climates276276276276276Continental Climates2817628176.28176.28176.28176.28176.28176.28176.28176.28176.28176.28176.28176.28176.28176.28176.28176.28116.1.1Purpose and scope16.2.1Detection of climate changes16.2.2Analysis of rapid decline of groundwater levels16.2.3Simulation of groundwater depletion under recent droughts290			15.1.3	Methods	268		
15.3Policy recommendations27415.4Future work274Acknowledgements276References276Continental Climates16 Impacts of drought on groundwater depletion in the Beijing Plain, ChinaPlain, China281Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye28116.1Introduction28116.1.1Purpose and scope28116.2.2Results and discussion28616.2.1Detection of climate changes28616.2.2Analysis of rapid decline of groundwater levels28916.2.3Simulation of groundwater depletion under recent droughts290			15.1.4	Relevance for GRAPHIC	269		
15.4Future work274Acknowledgements276References276Continental Climates16 Impacts of drought on groundwater depletion in the Beijing Plain, ChinaPlain, China281Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye28116.1Introduction28116.1.1Purpose and scope28116.2.2Description of the study area: the Beijing Plain28216.2.1Detection of climate changes28616.2.2Analysis of rapid decline of groundwater levels28916.2.3Simulation of groundwater depletion under recent droughts290		15.2			271		
Acknowledgements References276Continental Climates281Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye16.1Introduction 16.1.128116.2Results and discussion 16.2.128116.2.2Analysis of rapid decline of groundwater levels 16.2.328016.2.3Simulation of groundwater depletion under recent droughts290		15.3	Policy 1	recommendations	274		
References 276 Continental Climates 16 Impacts of drought on groundwater depletion in the Beijing Plain, China 281 Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye 281 16.1 Introduction 281 16.1.1 Purpose and scope 281 16.1.2 Description of the study area: the Beijing Plain 282 16.2 Results and discussion 286 16.2.1 Detection of climate changes 286 16.2.2 Analysis of rapid decline of groundwater levels 289 16.2.3 Simulation of groundwater depletion under recent droughts 290							
Continental Climates16Impacts of drought on groundwater depletion in the Beijing Plain, China281Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye28116.1Introduction28116.1.1Purpose and scope28116.1.2Description of the study area: the Beijing Plain28216.2Results and discussion28616.2.1Detection of climate changes28616.2.2Analysis of rapid decline of groundwater levels28916.2.3Simulation of groundwater depletion under recent droughts290							
16Impacts of drought on groundwater depletion in the Beijing Plain, China281Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye28116.1Introduction28116.1.1Purpose and scope28116.1.2Description of the study area: the Beijing Plain28216.2Results and discussion28616.2.1Detection of climate changes28616.2.2Analysis of rapid decline of groundwater levels28916.2.3Simulation of groundwater depletion under recent droughts290		Refer	ences		276		
Plain, China281Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye16.116.1Introduction28116.1.1Purpose and scope28116.1.2Description of the study area: the Beijing Plain28216.2Results and discussion28616.2.1Detection of climate changes28616.2.2Analysis of rapid decline of groundwater levels28916.2.3Simulation of groundwater depletion under recent droughts290				Continental Climates			
Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye16.1Introduction28116.1.1Purpose and scope28116.1.2Description of the study area: the Beijing Plain28216.2Results and discussion28616.2.1Detection of climate changes28616.2.2Analysis of rapid decline of groundwater levels28916.2.3Simulation of groundwater depletion under recent droughts290	16			ought on groundwater depletion in the Beijing	281		
16.1Introduction28116.1.1Purpose and scope28116.1.2Description of the study area: the Beijing Plain28216.2Results and discussion28616.2.1Detection of climate changes28616.2.2Analysis of rapid decline of groundwater levels28916.2.3Simulation of groundwater depletion under recent droughts290			, ,	Liva Wang, Jiurong Liu & Chao Ye	201		
16.1.1Purpose and scope28116.1.2Description of the study area: the Beijing Plain28216.2Results and discussion28616.2.1Detection of climate changes28616.2.2Analysis of rapid decline of groundwater levels28916.2.3Simulation of groundwater depletion under recent droughts290		Ũ			201		
16.1.2Description of the study area: the Beijing Plain28216.2Results and discussion28616.2.1Detection of climate changes28616.2.2Analysis of rapid decline of groundwater levels28916.2.3Simulation of groundwater depletion under recent droughts290		10.1					
16.2Results and discussion28616.2.1Detection of climate changes28616.2.2Analysis of rapid decline of groundwater levels28916.2.3Simulation of groundwater depletion under recent droughts290							
16.2.1Detection of climate changes28616.2.2Analysis of rapid decline of groundwater levels28916.2.3Simulation of groundwater depletion under recent droughts290		16.2					
16.2.2Analysis of rapid decline of groundwater levels28916.2.3Simulation of groundwater depletion under recent droughts290		10.2					
16.2.3 Simulation of groundwater depletion under recent droughts 290				-			
				• • •			

XII	Contents					
	16.3	Manage	ement issues	299		
		16.3.1	Legal aspects	299		
		16.3.2	Institutional aspects	300		
		16.3.3	A drought management plan	301		
	16.4	Conclus	sions and recommendations	301		
	Ackn	Acknowledgements				
	Refer	ences		302		
17	Possi	ble effect	ts of climate change on hydrogeological systems: results			
			on Esker aquifers in northern Finland	305		
	Bjørn Kløve, Pertti Ala-aho, Jarkko Okkonen & Pekka Rossi					
	17.1	Introduction		305		
		17.1.1	Study area description: esker aquifers,			
			northern Finland	307		
		17.1.2	Importance of esker aquifers in climate			
			change studies	309		
	17.2	Results	and discussion	310		
		17.2.1	How should we assess climate change and			
			land-use changes?	310		
		17.2.2	Models used and our experiences from modelling	311		
		17.2.3	Impact of future climate change on hydrology			
			and recharge	312		
		17.2.4	Surface water-groundwater interaction in lakes	314		
		17.2.5	Impact of peatland drainage	316		
	17.3	Policy 1	recommendations	317		
	17.4	Future	work	317		
	Ackn	owledgen	nents	318		
	Refer	ences		318		

Polar Climates

18	Impacts of climate change on groundwater in permafrost areas: case study from Svalbard, Norway			323
	Sylvi Haldorsen, Michael Heim & Martine van der Ploeg			
	18.1	Introduc	ction	323
		18.1.1	Purpose and scope	323
		18.1.2	Area description	325
		18.1.3	Methodology	325
		18.1.4	Relevance to GRAPHIC	326
	18.2	Results	and discussion: Subpermafrost groundwater	326
		18.2.1	Discontinuous permafrost	326
		18.2.2	Continuous permafrost, case study Svalbard: results	
			and discussion of previous work	327
	18.3	Policy-1	relevant recommendations	332
	18.4	Future work		333
	Refere	ences		334

Various	Climates
---------	----------

19	Groundwater management in Asian cities under the pressures of human impacts and climate change					
	Mako	oto Taniguchi				
	19.1 Introduction					
		19.1.1 Relevance for GRAPHIC	341 342			
	19.2	Results and discussion	343			
		19.2.1 Satellite GRACE	343			
		19.2.2 Subsurface warming	344			
		19.2.3 Groundwater assessment as natural capacity	347			
	19.3	Policy recommendations	348			
	19.4	Conclusion and future work	349			
	Refer	rences	349			
20	Evalı	uation of future climate change impacts on European				
	groundwater resources					
	Kevin Hiscock, Robert Sparkes & Alan Hodgson					
	20.1	Introduction	351			
	20.1	20.1.1 Description of the areas: aquifer units in northern	551			
		and southern Europe	353			
	20.2	*	353			
	20.3		356			
		Conclusions	362			
		Future work and relevance to GRAPHIC	362			
	Ackn	363				
		rences	363			
21	Susta	ninable groundwater management for large aquifer				
	syste	ms: tracking depletion rates from space	367			
	Sean	Swenson & James Famiglietti				
	21.1	Introduction	367			
		21.1.1 Purpose and Scope	368			
		21.1.2 Description of the study area	368			
		21.1.3 Relevance to GRAPHIC	368			
	21.2	Methods and Results	369			
		21.2.1 Ground-based well measurements	369			
		21.2.2 Hydrologic Modelling	369			
		21.2.3 The GRACE-based approach: case studies				
		from the Central Valley of California				
		(USA) and northern India	370			
		A framework for global groundwater monitoring	373			
		owledgements	374			
	Refer	ences	374			

XIV	Conte	ents		
22	Major	science	findings, policy recommendations, and future work	377
	22.1	Overvie	W	377
	22.2	Tropical	climates	377
		22.2.1	Science findings	377
		22.2.2	Policy recommendations	379
	22.3	Dry (ari	d and semiarid) climates	381
		22.3.1	Science findings	381
		22.3.2	Policy recommendations	382
	22.4 Temperate climates			
		22.4.1	Science findings	383
		22.4.2	Policy recommendations	384
	22.5	Contine	ntal climates	384
		22.5.1	Science findings	384
		22.5.2	Policy recommendations	385
	22.6	Polar cli	imates	386
		22.6.1	Science findings	386
		22.6.2	Policy recommendations	387
	22.7	Various	climates	387
		22.7.1	Science findings	388
		22.7.2	Policy recommendations	389
	22.8	Future v	vork	392
	Refere	nces		393
Cont	tributir	ng Autho	ors and Contact Information	395
Auth	or ind	ex		399
Subj	ect ind	ex		000

ABOUT THE EDITORS

Holger Treidel is an environmental scientist and works as project coordinator with UNESCO's International Hydrological Programme in Paris. His work is related to the sustainable management of groundwater resources under the effects of climate change & variability, with particular focus on the complex challenges related to the management of transboundary aquifer systems. He is coordinating the UNESCO project Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC) and global and regional transboundary groundwater management projects in cooperation with the Global Environmental Facility (GEF).

Jose Luis Martin-Bordes is a civil engineer specialized in groundwater resources management and works as project coordinator in the International Hydrological Programme (IHP) within the Division of Water Sciences of UNESCO, Paris, France. He provides support to the coordination of the IHP Groundwater activities including the Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC), the International Shared Aquifer Resources Management Initiative (ISARM), Groundwater Dependent Ecosystems and Groundwater for Emergency Situations (GWES).

Jason J. Gurdak is Assistant Professor of hydrogeology in the Department of Geosciences at San Francisco State University, California, USA. He and his research group address basic and applied questions about sustainable groundwater management, vadose zone and soil-water processes that affect recharge and contaminant transport, groundwater vulnerability to contamination and climate extremes, and the effects of climate change and interannual to multidecadal climate variability on water resources. Since 2004 he has served on the UNESCO project Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC) that promotes science, education, and awareness of the coupled effects of climate change and human stresses on global groundwater resources.

ACKNOWLEDGMENTS

Compiling this book was a collaborative effort. We are sincerely grateful to all authors for their contributions. Their enthusiastic involvement and insightful feedback have allowed us to put together an interesting and valuable publication.

The preparation of this publication would have not been possible without the support of UNESCO's International Hydrological Programme (IHP) and its *Groundwater Resources Assessment under the Pressures of Humanity and Climate Change* (GRAPHIC) project, which has helped create an active and global group of scientists dedicated to unraveling groundwater and climate interactions and raising attention for a topic that has received only little attention previously. We would like to thank in particular Alice Aureli for her guidance and overall coordination and to Timothy Green for his continued support of the GRAPHIC expert group. Our thanks also go to the many cooperating universities, institutions, and organizations – too many to mention – that support GRAPHIC.

The Editors are grateful to the following people and many anonymous reviewers for their assistance with the external peer review of papers submitted for publication in this volume:

Giovanni Barrocu	University of Cagliari, Department of Land Engineering, Italy
John Bloomfield	British Geological Survey, UK
Elisabetta Carrara	Water Resource Assessment, Climate & Water Division/ Bureau of Meteorology, Melbourne, Australia
Dioni Cendon Sevilla	ANSTO Institute for Environmental Research, Australia
Jianyao Chen	Department of Water Resource and Environment, School of Geographical Science and Planning, Sun Yatsen University, China
Ian Ferguson	U.S. Bureau of Reclamation, Lakewood, Colorado, USA
Timothy Green	U.S. Department of Agriculture, Agricultural Systems Research Unit, USA
Ian Holman	Cranfield Water Science Institute (CWSI), Cranfield University, UK
Neno Kukuric	International Groundwater Resources Assessment Centre (IGRAC), The Netherlands
James Terry	Department of Geography, National University of Singapore, Kent Ridge, Singapore
Tristan Wellman	U.S. Geological Survey, Lakewood, Colorado, USA
Kamel Zouari	Laboratory of Radio-Analysis and Environment of the National School of Engineers, Sfax, Tunisia

CHAPTER 1

Introduction

1.1 RATIONALE

Groundwater is an essential part of the hydrological cycle and is a valuable natural resource providing the primary source of water for agriculture, domestic, and industrial uses in many countries. Groundwater is now a significant source of water for human consumption, supplying nearly half of all drinking water in the world (WWAP 2009) and around 43 percent of all water effectively consumed in irrigation (Siebert et al. 2010). Groundwater also is important for sustaining streams, lakes, wetlands, and ecosystems in many countries.

The use of groundwater has particular relevance to the availability of many potablewater supplies because groundwater has a capacity to balance large swings in precipitation and associated increased demands during drought and when surface water resources reach the limits of sustainability. During extended droughts the utilization of groundwater for irrigation is expected to increase, including the intensified use of non-renewable groundwater resources, which may impact the sustainability of the resource. However, global groundwater resources may be threatened by human activities and the uncertain consequences of climate change.

Global change encompasses changes in the characteristics of inter-related climate variables in space and time, and derived changes in terrestrial processes, including human activities that affect the environment. Changes in global climate are expected to affect the hydrological cycle, altering surface-water levels and groundwater recharge to aquifers with various other associated impacts on natural ecosystems and human activities. Also groundwater discharge, storage, saltwater intrusion, biogeochemical reactions, and chemical fate and transport may be modified by climate change. Although the most noticeable impacts of climate change could be changes in surface water levels and quality, there are potential effects on the quantity and quality of groundwater. While recognizing that groundwater is a major source of water across much of the world, particularly in rural areas in arid and semi-arid regions, the Intergovernmental Panel on Climate Change (IPCC) 3rd and 4th Assessment Reports state that there has been very little research on the potential effects of climate change (IPCC 2001, 2007; Bates 2008). In recent decades, a wide array of scientific research has been carried out to better understand how water resources might respond to global change (Green et al. 2011). Recent research has been focused predominantly on surface-water systems, due to their visibility, accessibility and more obvious recognition of surface waters being affected by global change. However, little is known about how subsurface waters in the vadose zone and groundwater might respond to climate change and affect the current availability and future sustainability of groundwater resources (UNESCO 2008). It is important to mention that in the past ten years the number of peer-reviewed journal paper publications addressing groundwater and climate change has increased considerably as shown in Fig. 1.1. Also only recently, water resources managers and politicians are progressively recognising the important role of groundwater resources in meeting the demands for drinking water, agricultural and industrial activities, and sustaining ecosystems, as well as in the adaptation to and mitigation of the impacts of climate change and coupled human activities (Green et al. 2011).

2 Introduction

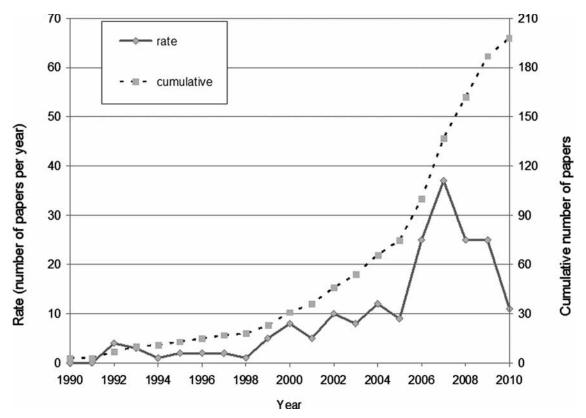


Figure 1.1. Rate of peer-reviewed journal paper publications addressing groundwater and climate change from 1990 to 2010. A total of 198 papers addressing subsurface water and climate change are included. Final references were compiled in February 2011, so some papers published late in 2010 may be missing (modified from Green et al. 2011).

Besides the direct impacts of climate change on the natural processes of the global hydrological cycle, it is crucial to also consider the indirect impacts. These are human responses to the direct impacts, such as increased utilization of groundwater in times of drought and non-availability of surface water and may lead to increased and unsustainable abstraction and utilization of groundwater resources, including non-renewable groundwater reserves. Thus, there are urgent and ongoing needs to address the expected coupled effects of human activities and climate change on global groundwater resources.

To address these concerns, the United Nations Educational, Scientific, and Cultural Organisation (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC project (*Groundwater Resources Assessment under the Pressures of Humanity and Climate Change*) in 2004. GRAPHIC seeks to improve our understanding of how groundwater interacts within the global water cycle, supports ecosystems and humankind and, in turn, responds to complex and coupled pressures of human activities and climate change. To successfully achieve these objectives within a global context, GRAPHIC was developed to incorporate a collaborative effort and umbrella for international research and education. GRAPHIC outlines areas of desired international investigations covering major geographical regions, groundwater resource topics, and methods to help advance the combined knowledge needed to address scientific and social aspects (UNESCO 2008).

The GRAPHIC project was designed with the understanding that groundwater resources can have nonlinear responses to atmospheric conditions associated with climate change and/or terrestrial-surface conditions associated with human activities. Therefore, groundwater assessments under the coupled pressures of human activities and climate change and variability involve the exploration of complex-system interactions. GRAPHIC incorporates a multidisciplinary scientific approach as the most rigorous platform to address such complexity. Furthermore, the GRAPHIC project extends investigations beyond physical, chemical, and biological interactions to include human systems of resource management and governmental policies. The structure of the GRAPHIC project has been divided into subjects, methods, and regions. The subjects encompass (i) groundwater quantity (recharge, discharge, and storage), (ii) quality, and (iii) management aspects. A variety of scientific methods and tools are being applied in the framework of GRAPHIC, including analysis of field data, geophysics, geochemistry, paleohydrology, remote sensing (in particular GRACE satellite gravimetry), information systems, modelling, and simulation. GRAPHIC consists of regional components (Africa, Asia and Oceania, Europe, Latin America, and the Caribbean and North America) where case studies have been identified and carried out.

The management of groundwater resources under the coupled pressures of climate change and human activities is a challenge. Sound understanding of the functioning of groundwater systems and their interactions with numerous and interlinked external factors is an indispensable basis for informed management. GRAPHIC strives to facilitate cooperation between scientists of different disciplines and from different countries. The basin/aquifer scale case studies presented in this book have been selected in each region by local scientists and experts of the respective subject.

1.2 OVERVIEW OF THE BOOK

Climate Change Effects on Groundwater – A Global Synthesis of Findings and Recommendations is a compilation of 20 case studies from more 30 different countries that have been carried out under the framework of the UNESCO-IHP GRAPHIC project. The approximate location of each case study is displayed on the "Groundwater Resources of the World" map (WHYMAP 2008) (Fig 1.2).

The case studies presented in this volume represent aquifers from all the major climate regions of the world. The studies address groundwater resources in a range of hydrogeological settings from mountainous to coastal aquifer systems, including unconfined, semi-confined, and confined aquifers in unconsolidated to fractured-rock material. More details on each case study location, climate, hydrogeological setting, land use, groundwater use, as well as subjects addressed and methods applied are presented in the overview table (Table 1.1).

This volume is organized by case study according to the major climate groups of the Köppen-Geiger climate classification scheme (Köppen 1936): tropical, dry (arid and semi-arid), temperate, continental, and polar climates. Three chapters that cover several study areas and different climate groups are presented under "various climates" and are displayed in Figure 1.2 as one large circle or multiple circles indicating the regional scope of the respective chapter. The case study chapters (Chapters 2 to 21) each follow a similar organization and structure. The introduction of each chapter describes the purpose and scope, study area, methodology, and relevance to the GRAPHIC project. The results and discussion are followed by recommendations for water managers and planners, as well as policy and decision makers. Finally, the continuation of research activities and future work are outlined.

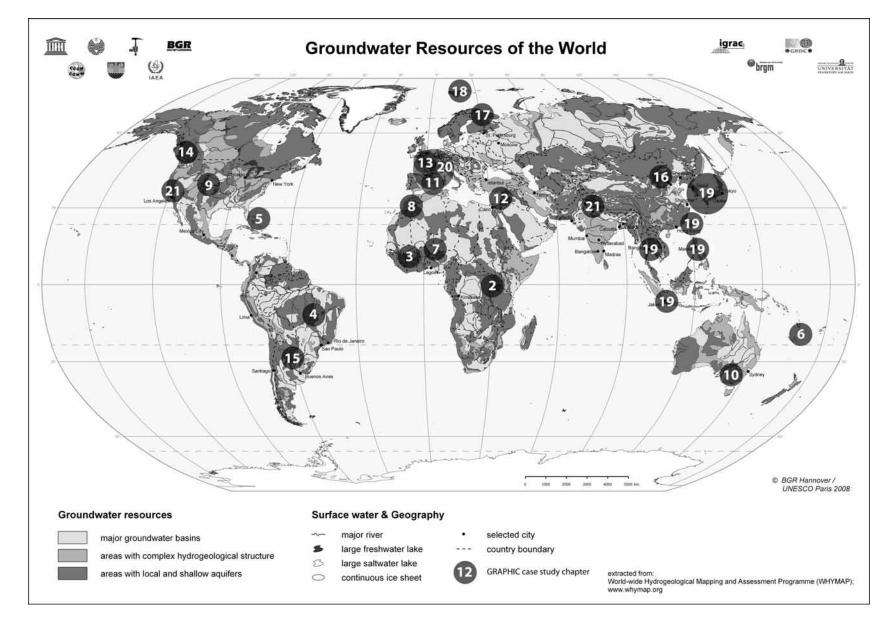


Figure 1.2. Approximate location of case study displayed on the "Groundwater Resources of the World" map (WHYMAP 2008). Numbers refer to the chapters in this volume. Case studies that cover several study areas and different climate groups are displayed as one large circle or multiple circles indicating the regional scope of the respective chapter.

Table 1.1Overview of case studies.

Location	Climate	Hydrogeological setting	Land use	Groundwater use	Quantity or Quality	Methods
	8	Rapid Development on Wea Tropics of sub-Saharan Afri		outh-Western Uganda		
East Africa, South- western Uganda, River Mitano Basin	Tropical (humid)	Deeply weathered, crystalline rock aquifers	Agriculture, grassland, small areas of wetland, forest and plantations	Irrigation, livestock, drinking	Quantity: recharge, discharge, storage	Modelling
Chapter 3: Groundwa	ter Recharge and Storage	Variability in Southern Mali	i, Africa			
Western Sub-Saharan Africa, southern Mali, Niger river basin	Tropical (wet and dry), and partly dry (semiarid)	Clayey laterites overlying unconfined/semi-confined fractured sandstone aquifers	Savanna, shrubland, agriculture	Drinking, agriculture, livestock	<u>Quantity:</u> recharge, storage	GRACE, Modelling, Monitoring
-	ter Discharge as Affected h logic and Economic Case S	oy Land Use Change in Sma tudy in Central Brazil	11			
South America, central Brazil, Pipiripau river basin	Tropical (humid)	Deep, well drained soils (red oxisols and ultisols), underlain by quartzites, phyllites, and rhythmites	Agriculture, pastureland, natural savannah, woodland, grassland	Support aquatic ecosystems and hydrological services	<u>Quantity:</u> base flow discharge	Data correlation, empirical method
Chapter 5: Effects of 8	Storm Surges on Groundwa	ater Resources, North Andr	os Island, Bahamas			
The Caribbean, The Bahamas, North Andros Island	Tropical (humid)	Shallow, fresh groundwater lens in limestone and limesand aquifers	Forest, shrubland, rural communities	Local drinking and domestic needs; primary water supply for New Providence Island	Quantity: recharge, storage Quality: saltwater intrusion, salinity, septic systems	Monitoring

Chapter 6: Reducing	Groundwater Vulnerabilit	ty in Carbonate Island Count	ries in the Pacific			
Central and southern Pacific Ocean, small island nations	Tropical/Sub-Tropical	Shallow, fresh groundwater lens in permeable coral sand and karst limestone aquifers	Forest, shrubland, urban	Drinking, agriculture	Quantity: recharge, abstraction, storage; Quality: saltwater intrusion	Modelling, Monitoring
Chapter 7: Groundwa	ater Resources Increase in	the Iullemmeden Basin, West	t Africa			
West Africa, Nigeria and Niger, Iullemmeden Basin	Dry (semiarid)	Sedimentary basin, largely unconfined. Several confined aquifers exists at depth. (Continental Terminal aquifer – unconfined)	Mainly rainfed agriculture, livestock breeding (in the North)	Drinking, livestock breeding. Use for irrigation very limited spatially	Quantity: groundwater dynamics and recharge	Remote sensing, subsurface geophysics, environmental geochemistry hydrodynamics, monitoring, numerical modeling at various scales
Chapter 8: Climate C	Change and its Impacts on	Groundwater Resources in M	lorocco: the Case of	the Souss-Massa Basin		
North Africa, Morocco, Souss-Massa basin	Dry (arid to semiarid)	Shallow aquifer of the Souss-Massa plain, coastal aquifer	Irrigated agriculture	Irrigation, drinking, industry	Quantity: storage, recharge Quality: salinization, nitrate	Trend analyses (precipitation and temperature), monitoring (gw level), hydrochemical and isotopic tracers

Chapter 9: Vulnerability of Groundwater Quality to Human Activity and Climate Change and Variability, High Plains Aquifer, USA

North America, central United States, Great Plains province	Dry (semiarid)	High Plains aquifer: primarily unconsolidated, unconfined aquifers	Irrigated and dryland agriculture, rangeland	Irrigation, livestock, drinking	Quality: nitrate, other chemical constituents Quantity: recharge, abstraction	Age dating, GIS, Modelling, Monitoring	
Chapter 10: Groundw	ater Change in the Murray	Basin from Long-Term In-	Situ				
Monitoring and GRA	CE Estimates (Australia)						
Southeastern Australia, Murray Basin	Dry (semiarid)	Unconsolidated sediments and sedimentary rocks. Confined and unconfined. Specific aquifers: Murray Group, Pliocene Sands aquifer, Shepparton Formation	Farming land, native and plantation forests, livestock production (cattle and sheep)	Irrigation, livestock, drinking	<u>Quantity:</u> recharge, discharge; <u>Quality:</u> salinization	GRACE, Monitoring	
Chapter 11: Impact Assessment of Combined Climate and Management Scenarios on Groundwater Resources. The Inca-Sa Pobla Hydrogeological Unit (Majorca, Spain)							
Europe, Mediterranean Balearic island, Majorca, Spain	Mediterranean climate, temperate/semi-arid	Four different hydrostratigraphic units and three aquitard units, grouped into an upper and lower aquifer system	Agriculture	Irrigation, tourism, ecosystems	Quantity: recharge, discharge, exploitation	Modelling, simulations, management	

(Continued)

Chapter 12: The Effec	t of Climate and Sea Level	l Changes on Israeli Coastal	Aquifers			
Mediterranean, coastal aquifers and Dead Sea, Israel	· · · · · · · · · · · · · · · · · · ·	Israeli coastal aquifer: inter-layered sandstone, calcareous sandstone, siltstone, and red loam Dead Sea coastal aquifer: Upper Cretaceous Judea Group Aquifer and the Quaternary alluvial coastal aquifer	Agriculture	Irrigation, domestic	Quantity: recharge Quality: saltwater intrusion, salinization	Modelling, simulations, monitoring
Chapter 13: Land Sub The Netherlands	sidence and Sea-Level Ris	e Threaten Freshwater Reso	urces in the Coastal	Groundwater System of	the Rijnland Wat	er Board,
Europe, Coastal groundwater system, Rijnland, The Netherlands	Temperate, Continental	Quaternary deposits, intersected by loamy aquitards and overlain by a Holocene aquitard of clay and peat	Agriculture	Irrigation, domestic and industrial	Quality: saltwater intrusion, salinization	Modelling, simulations
Chapter 14: Climate C	Change Impacts on Valley-	Bottom Aquifers in Mountai	n Regions: Case Stu	dies from British Colum	bia, Canada	
North America, western Canada, mountain regions British Columbia	Dry (semi-arid to arid)	Okanagan Basin, Grand Forks: valley-bottom unconsolidated aquifers	Forest, shrubland, urban	Drinking, agriculture, industry	<u>Quantity:</u> recharge	GCM downscaling, Modelling, GIS
Chapter 15: Possible F	Effects of Climate Change	on Groundwater Resources i	n the Central Regio	n of Santa Fe Province, A	Argentina	
South America, Argentina, Santa Fe Province	Temperate (humid)	Upper unconfined aquifer: aeolian sedimentary deposits Semi-unconfined aquifer: sands of fluvial origin	Agriculture, livestock, rearing	Drinking, food production (agriculture, livestock rearing), industry	Quantity: recharge, discharge Quality: chemical compound input, salinization	Modelling

Chapter 16: Impacts	of Drought on Groundwate	r Depletion in the Beijing Pl	ain, China			
East Asia, China, Beijing Plain	Continental (dry)	Sedimentary (alluvial), shallow aquifer mainly unconfined, deep aquifers confined	Agriculture, industry, drinking	Irrigation from shallow aquifer; drinking, industry mainly from deep aquifer)	<u>Quantity:</u> recharge, storage	Monitoring, modelling
Chapter 17: Possible	Effects of Climate Change of	on Hydrogeological Systems	: Results from Resea	arch on Esker Aquifers in	n Northern Finlan	d
Europe, northern Finland	Continental (polar)	Esker aquifers: unconsolidated, unconfined or confined	Forest, peatland	Ecosystems, drinking, recreation	Quantity: recharge, discharge Quality: temperature, dissolved oxygen, salts	Monitoring, modelling
Chapter 18: Climate	Change Effects on Groundy	vater in Permafrost Areas –	Case Study from th	e Arctic Peninsula of Sva	lbard, Norway	
Europe, Norway, Svalbard peninsula	Polar (arctic)	Subpermafrost groundwater	none (60% covered by glaciers, large part is declared National Park)	Drinking (very limited)	Quantity: recharge, discharge	Monitoring, rock cores, simulation and modelling
Chapter 19: Groundw	vater Management in Asian	Cities under the Pressures	of Human Impacts a	and Climate Change		
Asian coastal cities: Tokyo, Osaka, Seoul, Taipei, Bangkok, Jakarta and Manila	Temperate, Continental Tropical	Coastal alluvial plain, urban subsurface soil	Urban	Domestic use, industry	Quantity: recharge, storage Quality: contamination	GRACE, modelling, GIS

(Continued)

Table 1.1 Continued

Chapter 20: Evaluation of Future Climate Change Impacts on European Groundwater Resources

|--|

Chapter 21: Sustainable Groundwater Management for Large Aquifer Systems: Tracking Depletion Rates from Space

North America,	Central Valley: Temperate	Central Valley and	Agriculture	Irrigated agriculture,	<u>Quantity:</u>	GRACE,
western US,	(Mediterranean	northern India: confining		drinking, and industry	discharge,	monitoring, and
California, Central	climate); northern India:	units and unconfined,			storage	modelling
Valley aquifer; and	Dry-Continental	semiconfined, and				
northern India		confined aquifers				

Tropical climate case studies (Chapters 2 to 6) include those from Africa (Uganda and Mali), Latin America (Brazil), the Caribbean (The Bahamas), and Pacific Island countries. Based on findings from south-western Uganda, Chapter 2 addresses whether intensive groundwater abstraction from weathered crystalline rock aquifers is a viable option to meet rapidly rising demand for domestic and agricultural water in Sub-Saharan Africa. The chapter also analyses projections of climate change impacts on groundwater resources and discusses opportunities and risks of their application to inform decision making. Chapter 3 describes the combined application of several methodologies, including measured field data, remote sensing, and modelling for estimating groundwater recharge and storage variability in southern Mali. The integration of these methods may be a promising tool for assessing groundwater resources in data scarce regions. The chapter also provides a preliminary assessment of the impacts of future climate change on groundwater recharge. The case study from Brazil (Chapter 4) uses an empirical method to assess the hydrological and economical effects of land-use change on groundwater discharge in a small tropical catchment.

Groundwater is the main source of freshwater on many islands. The resource is particularly vulnerable to extreme climate events, sea-level rise, and human-induced perturbations. Chapter 5 describes a storm surge from Hurricane Frances in 2004 that contaminated the groundwater supply on North Andros Island, The Bahamas. Chapter 6 presents key climatic, hydrogeological, physiographic, and management factors that influence groundwater quantity and saline intrusion into freshwater lenses beneath small Pacific Island countries.

Dry (arid and semiarid) climate case studies (Chapters 7 to 10) focus on the effects of climate change and human activities on groundwater resources in Africa (Morocco, Niger, and Nigeria), the United States (US), and Australia. Chapter 7 describes large-scale land clearing in the southern part of the Iullemmeden Basin that experiences increased groundwater recharge and rising water levels over the past several decades. Management responses to outcropping water tables and salinization of soils are discussed. The Morocco case study (Chapter 8) analyses trends in temperature and precipitation and the effects of projected changes on groundwater recharge and water quality in the arid Souss-Massa Basin.

The quality of groundwater is often as critically important as its quantity in terms of groundwater sustainability. Chapter 9 presents the coupled effects of human and climate stresses on groundwater quality in the High Plains aquifer, which is the most heavily used aquifer in the US and supplies about 30% of the groundwater used for irrigation in the US. Focusing, in turn, mainly on groundwater quantity aspects, Chapter 10 shows the complex and coupled effects of human activity (land clearing) on groundwater (increase of recharge and groundwater levels), and subsequent multi-year drought (decrease of groundwater levels) in the Murray Basin in south-eastern Australia. A comparison of borehole data with space gravimetry (GRACE) and soil moisture estimates from hydrological models is used to test the capability of the GRACE mission and provide regional estimates of change in groundwater storage so that it can be applied for the monitoring of insufficiently instrumented regions.

Temperate climate case studies (Chapters 11 to 15) include those from coastal aquifers in Spain, Israel, and The Netherlands, mountain regions of British Columbia, and the Santa Fe Province of Argentina. The Mediterranean region faces an increasing water demand for agriculture and tourism, while climate change projections forecast an

12 Introduction

increase of temperature, decrease of precipitation, and increased occurrence of extreme events. Chapter 11 analyses combinations of climate scenarios and management strategies on the island of Majorca (Spain) in view of preserving groundwater resources under predicted climate change.

Seawater intrusion into coastal aquifers is a concern in the Mediterranean. Chapter 12 describes the coupled effect of climate and anthropogenic sea level changes on Israeli coastal aquifers of the Mediterranean Sea and the Dead Sea. Chapter 13 presents the impacts of land subsidence and sea-level rise on freshwater resources in coastal groundwater systems of The Netherlands. In these systems, saline groundwater comes from the sea and from deep saline aquifers, and subsequently intrudes near-surface coastal groundwater systems. The salinization of the subsoil is caused by human-driven processes of land subsidence that have been going on for nearly a millennium.

Mountain watersheds or basins are unique high-relief environments that are important sources of water for local and downstream ecosystems and human population. Chapter 14 provides an overview of hydrogeological processes in temperate mountain regions as a basis for understanding how climate change may influence the groundwater systems. Case study examples of two valley-bottom aquifer systems in southern British Columbia, Canada highlight the complex interactions that need to be considered for climate change impact and adaptation assessment. Applying a modelling approach, the chapter explores recharge mechanisms and evaluates how the magnitude and timing of recharge may change under future climate conditions.

In the temperate central region of the Santa Fe Province in Argentina (Chapter 15) groundwater is the only source of water supply for all regional demands. The case study analyses available hydrogeological data to describe the aquifer system and quantify present groundwater availability. Future recharge to the aquifer system is estimated, and incorporated into a numerical groundwater flow model to assess future groundwater availability for drinking and food production under different climate scenarios.

Continental climate case studies (Chapters 16 and 17) include those from China and Finland. Chapter 16 analyses the impacts of prolonged drought on groundwater resources in the Beijing Plain where the combined effects of decreasing natural recharge and increasing abstraction have caused rapid depletion of groundwater storage. The chapter elaborates on direct and indirect impacts of climate change and proposes management responses based on simulations of groundwater depletion under various scenarios. Chapter 17 describes possible effects of climate change on esker aquifers in northern Finland. Eskers are an important source of potable groundwater in Finland and support many ecosystem services. However, groundwater in eskers is threatened by peatland drainage, agriculture, roads, and other land uses. This chapter describes the possible impacts of climate change and land use on esker groundwater systems with focus on the impact of peatland drainage in the esker discharge zone.

The polar climate case study (Chapter 18) is from Svalbard, Norway. Polar regions are sparsely populated, but have gained a lot of interest in the discussions about climate change because high-latitude areas are predicted to experience the most dramatic global climate change in this century. Moreover, large parts of these areas are regarded as pristine, with unique and highly specialized habitats for animals and plants. Groundwater forms part of this system that is – and will be – highly impacted by climate change. Chapter 18 presents a case study that examines climate change impacts on arctic sub-permafrost groundwater from the Arctic Peninsula of Svalbard, Norway.

Chapters 19 to 21 present case studies that encompass different climatic zones. Chapter 19 assesses the effects of climate change and human activities on urban subsurface environments and groundwater, which is an important but largely unexamined field of human-environment interactions. In this chapter, the subsurface environments of seven Asian coastal cities are studied with respect to water shortage, land subsidence, groundwater storage and contamination, thermal anomalies, and the urban heat island effect.

Similar to other regions of the world, groundwater in Europe is a substantial economic resource that is threatened by over-abstraction and contamination from surface-derived pollutants, which could be exacerbated by climate change. Chapter 20 evaluates future climate change effects on European groundwater resources in five study areas in northern and southern Europe, centred on the Å (Denmark), Medway (UK), Seine (France), Guadalquivir (Spain), and Po (Italy) river basins.

Chapter 21 describes the application of satellite gravimetry (GRACE) for characterizing groundwater storage changes in large aquifer systems – a method that provides new opportunities for water-resources monitoring, particularly in data sparse regions. Two case studies of groundwater depletion are presented, one in the relatively data-rich Central Valley aquifer of California (US) and in the other in more data-poor northern India.

The last chapter, Chapter 22, summarizes the main findings of the book in terms of new scientific insight and policy recommendations. This chapter, in particular, is expected to be of great interest to water resource managers, planners, and decision makers entrusted with the management of a valuable resource. In the light of global change, and climate change in particular, groundwater will continue to be an important resource that supports human health and livelihoods and many natural ecosystems. A sound understanding of the resource and current and future pressures from climate and human activities are necessary to guide adaptive management towards long-term groundwater sustainability.

REFERENCES

- Bates, B., Kundzewicz, Z.W., Wu, S. & Palutikof, J.P. (2008) Climate change and water. *Technical Paper VI of the Intergovernmental Panel on Climate Change*. Geneva, Intergovernmental Panel on Climate Change Secretariat. 210 pp.
- Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., Treidel, H. & Aureli, A. (2011) Beneath the surface of global change: Impacts of climate change on groundwater. *Journal of Hydrology*. doi:10.1016/j.jhydrol.2011.05.002 [Online] Available from: http:// www.sciencedirect.com/science/article/pii/S0022169411002988. Accessed 1 October 2011
- IPCC. (2001): Working Group II: Climate Change 2001, Impacts, Adaptation and Vulnerability. [Online] Available from: http://www.grida.no/publications/other/ipcc_tar/?src=/climate/ipcc_ tar/wg2/377.htm. Accessed 30 September 2011
- IPCC. (2007) Climate change 2007: The physical science basis. *Contribution of Working Group I* to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, Cambridge University Press.
- Köppen, W. (1936) Das geographische System der Klimate. In: Köppen, W. and Geiger, G. (eds.) *Handbuch der Klimatologie*. Vol. 1, part C. Berlin, Gebr, Borntraeger. pp. 1–44.
- Siebert, S., Burke, J., Faures, J.M., Frenken, K., Hoogeveen, J., Döll, P. & Portmann, F.T. (2010) Groundwater use for irrigation – a global inventory. *Hydrology and Earth System Sciences*.

14 Introduction

[Online]14,1863–1880.Availablefrom:www.hydrol-earth-syst-sci.net/14/1863/2010/doi:10.5194/ hess-14-1863-2010 (direct link to the paper: http://www.hydrol-earth-syst-sci.net/14/1863/2010/ hess-14-1863-2010.pdf) . Accessed 1 October 2011

- UNESCO. (2008) International Hydrological Programme of the United Nations Educational, Scientific and Cultural Organization (UNESCO). GRAPHIC framework document. [Online] Available from: http://unesdoc.unesco.org/images/0016/001631/163172e.pdf [Cited 20th July 2011].
- WHYMAP. (2008) Worldwide Hydrogeological Mapping and Assessment Programme, Groundwater Resources of the World 1:25,000,000. BGR/UNESCO. [Online]. Available from: http:// www.whymap.org/whymap/EN/Downloads/Global_maps/globalmaps_node_en.html. Accessed 1 October 2011
- WWAP. (2009) *The United Nations World Water Development Report 3: Water in a Changing World, World Water Assessment Programme*. Paris, UNESCO Publishing, UNESCO 2009. 349 p.

Contributing Authors and Contact Information

Pertti Ala-aho	Water Resources and Environmental Engineering Laboratory, Department of Process and Environmental Engineering, University of Oulu, Finland
Diana M. Allen*	Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada, email: dallen@sfu.ca
Ibrahim Baba Goni	Maiduguri University, Department of Geology, PMB 1069, Maiduguri, Nigeria
Lhoussaine Bouchaou*	Applied Geology and Geo-Environment Laboratory, Ibn Zohr University, BP. 8106 Cite Dakhla, 80000 Agadir, Morocco, email: lbouchaou@yahoo.fr
Saib Boutaleb	Applied Geology and Geo-Environment Laboratory, Ibn Zohr University, BP. 8106 Cite Dakhla, 80000 Agadir, Morocco
John Bowleg*	Water Resources Management Unit, Water & Sewerage Corporation (WSC), Nassau, Bahamas, email: wcjbowleg@wsc.com.bs
Breton W. Bruce	U.S. Geological Survey, Lakewood, Colorado, USA
Ana Paula S. Camelo	School of Technology-ENC, University of Brasilia-UnB, 70910–900, Brasilia-DF, Brazil
Lucila Candela*	Department of Geotechnical Engineering and Geoscience-Universitat Politècnica de Catalunya (UPC), C/Gran Capitán s.n., Barcelona, Spain, email: Lucila. candela@upc.edu
Ian Cartwright	School of Geosciences, Monash University, Melbourne, VIC 3800, Australia
Henrique M.L. Chaves*	School of Technology-EFL, University of Brasilia-UnB, 70910–900, Brasilia-DF Brazil, email: hchaves@unb.br
Mónica D'Elía	Grupo de Investigaciones Geohidrológicas. Facultad de Ingeniería y Ciencias Hídricas. Universidad Nacional del Litoral, Ciudad Universitaria (3000) Santa Fe, Argentina
Harm Demon	Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada

^{*} Corresponding author

Zine El Abidine El Morjani	Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Hay El Mohammadi (Lastah), BP. 271, 83 000 Taroudant, Morocco		
F. Javier Elorza	Universidad Politécnica de Madrid, Ríos Rosas 21, 28003, Madrid, Spain		
Adam Fakes	School of Earth and Environmental Sciences, James Cook University, Cairns, QLD 4878, Australia		
Tony Falkland	Island Hydrology Services, Canberra, Australia		
James Famiglietti*	UC Center for Hydrologic Modeling, Department of Earth System Science, University of California, Irvine, California, USA, email: jfamigli@uci.edu		
Guillaume Favreau*	IRD, UMR HydroSciences Montpellier, 276 Av. Maradi, BP 11416, Niamey, Niger, & Université Abdou Moumouni, Faculté des Sciences, département de Géologie, BP 10662, Niamey, Niger, email: Guillaume. Favreau@ird.fr		
Frédéric Frappart	GET, GRGS, Observatoire Midi-Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse Cedex 01, France		
Abdou Guéro	Niger Basin Authority, 288 rue du Fleuve Niger, BP 729, Niamey, Niger		
Jason J. Gurdak*	Department of Geosciences, San Francisco State University, San Francisco, California, USA, email: jgurdak@sfsu.edu		
Sylvi Haldorsen*	Department of Plants and Environmental Science, Norwegian University of Life Sciences, PO Box 5003, N-1432 AAs, Norway, email: sylvi.haldorsen@umb.no		
Mohamed Hssaisoune	Applied Geology and Geo-Environment Laboratory, Ibn Zohr University, BP. 8106 Cite Dakhla, 80000 Agadir, Morocco		
Michael Heim	Department of Plants and Environmental Science, Norwegian University of Life Sciences, P:O.Box 5003, N-1432 AAs, Norway		
Chris M. Henry	Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada		
Kevin Hiscock*	School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK, email: k.hiscock@uea.ac.uk		
Alan Hodgson	School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK		
Joaquín Jiménez-Martínez	Department of Geotecnical Engineering and Geoscience- Universitat Politècnica de Catalunya (UPC), C/Gran Capitán s.n., Barcelona, Spain		

	Contributing Authors and Contact Information 397		
Uri Kafri	Geological Survey of Israel, 30 Malkhe Israel, Jerusalem, 95501, Israel		
Dirk Kirste	Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada		
Bjørn Kløve*	Water Resources and Environmental Engineering Laboratory, Department of Process and Environmental Engineering, University of Oulu, Finland email: bjorn. klove@oulu.fi		
Henk Kooi	Department of Hydrology and Geo-Environmental Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands		
Marc Leblanc*	School of Earth and Environmental Sciences, James Cook University, Cairns, QLD 4878, Australia, email: marc.leblanc@jcu.edu.au		
Jiurong Liu	Beijing Geo-environmental Monitoring Station, China		
Peter B. McMahon	U.S. Geological Survey, Lakewood, Colorado, USA		
Rejane M. Mendes	School of Technology-EFL, University of Brasilia-UnB, 70910–900, Brasilia-DF, Brazil		
Yahaya Nazoumou	IRD, UMR HydroSciences Montpellier, 276 Av. Maradi, BP 11416, Niamey, Niger		
Jarkko Okkonen	Geological Survey of Finland, Kokkola, Finland		
Gualbert Oude Essink*	Deltares, Subsurface and Groundwater Systems, PO Box 85467, 3508 AL Utrecht, The Netherlands, email: gualbert.oudeessink@deltares.nl		
Marta Paris	Grupo de Investigaciones Geohidrológicas. Facultad de Ingeniería y Ciencias Hídricas. Universidad Nacional del Litoral, Ciudad Universitaria (3000) Santa Fe, Argentina		
Marcela Pérez	Grupo de Investigaciones Geohidrológicas. Facultad de Ingeniería y Ciencias Hídricas. Universidad Nacional del Litoral, Ciudad Universitaria (3000) Santa Fe, Argentina		
Martine van der Ploeg	Wageningen University, Dep. Environmental Sciences, P.O. Box 47, 6700AA, Wageningen, The Netherlands.		
Guillaume Ramillien	GET, GRGS, Observatoire Midi-Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse Cedex 01, France		
Pekka Rossi	Water Resources and Environmental Engineering Laboratory, Department of Process and Environmental Engineering, University of Oulu, Finland		

398 Contributing Authors and Contact Information

598 Contributing Authors and C	
Eyal Shalev	Geological Survey of Israel, 30 Malkhe Israel, Jerusalem, 95501, Israel
Robert Sparkes	School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Sean Swenson	Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA
Tarik Tagma	Applied Geology and Geo-Environment Laboratory, Ibn Zohr University, BP. 8106 Cite Dakhla, 80000 Agadir, Morocco
Makoto Taniguchi*	Research Institute for Humanity and Nature (RIHN), Kyoto, Japan email: taniguchispot@gmail.com
Richard Taylor*	Department of Geography, University College London, London, UK, email: r.taylor@geog.ucl.ac.uk
Callist Tindimugaya	Directorate of Water Resources Management, Ministry of Water and Environment, Entebbe, Uganda
Paul Tregoning	Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia
Ofelia Tujchneider*	Grupo de Investigaciones Geohidrológicas. Facultad de Ingeniería y Ciencias Hídricas. Universidad Nacional del Litoral, Ciudad Universitaria (3000) Santa Fe, Argentina/ Consejo Nacional de Investigaciones Científicas y Técnicas. Argentina, email: ofeliatujchneider@yahoo. com.ar
Sarah Tweed	School of Earth and Environmental Sciences, James Cook University, Cairns, QLD 4878, Australia
Wolf von Igel	Department of Geotecnical Engineering and Geoscience- Universitat Politècnica de Catalunya (UPC), C/Gran Capitán s.n., Barcelona, Spain/Amphos XXI Consulting S.L. Pg. de Rubí, 29-31, 08197, Valldoreix, Spain
Liya Wang	China University of Geosciences, Beijing, China & Beijing Geo-environmental Monitoring Station, China
Ian White*	Fenner School of Environment and Society, Australian National University, Canberra, Australia, email: ian. white@anu.edu.au
Chao Ye	Beijing Geo-environmental Monitoring Station, China
Yoseph Yechieli*	Geological Survey of Israel, 30 Malkhe Israel, Jerusalem, 95501, Israel, email: yechieli@gsi.gov.il
Yangxiao Zhou*	UNESCO-IHE Institute for Water Education, Delft, The Netherlands

Subject Index

A

Åriver, 349, 352
Argentina, 8, 11, 12, 265–276, 383, 391
Asia, 9, 13, 326–327, 341–349, 373, 383, 384
Atlantic Multidecadal Oscillation (AMO), 161, 388, 391
Australia, 7, 11, 57, 169–185, 381–382

B

Bahamas, 5, 11, 63–73, 379–380 Bangkok, 9, 341–342, 344–348 Base flow discharge, 49 Beijing Plain, 9, 12, 281–302 Brazil, 5, 11, 23, 49–61, 378, 380 British Columbia, 8, 11–12, 249–262, 393

C

Canada, 8, 12, 249–262, 305, 326, 385, 393 Caribbean Islands, 63–73 Central Valley aquifer, 10, 13, 367-374 China, 9, 12, 281–302, 333, 370, 385 climate change, 1–13, 17–18, 23–30, 33-34, 39-40, 43-44, 46, 52, 61, 68-69, 71, 77-79, 89, 91-93, 101-103, 130-132, 146, 151-156, 159-160, 164, 184–185, 191–192, 195–198, 202, 205, 211, 214, 222, 228–229, 234, 243, 265, 267, 269–271, 273_276, 282, 286, 305-307, 309-314, 317-318, 325-326, 342-343, 349, 351-355, 357, 359-363, 367, 377-393 climate variability, 18, 21, 30, 52–53, 68, 75, 79, 83, 85, 89, 93, 122, 134, 136, 145, 155, 160–162, 164, 176, 250, 270, 274, 305, 307, 310–311, 313, 318, 359, 361, 379, 381, 388

coastal aquifers, 8, 11–12, 88–89, 132, 205–214, 218–220, 222, 227–230, 234, 383–384 creeping normalcy, 163 crystalline rock aquifer system, 5, 17–30

D

Dead Sea coastal aquifer, 205–210, 212, 213, 216–220, 222 denitrification, 160 Denmark, 10, 13, 349–359 discharge, 1,3, 5–10, 17–30, 49–61, 75, 113, 148, 164, 183, 191, 220, 228, 249, 271, 276, 286, 305–318, 323, 340, 345, 352, 357,359, 383,385–391 downscaling, 8, 25, 29, 40, 61 73, 119, 194–196, 201, 254, 256–257, 260, 310, 361, 369, 379, 383 drought, 1–2, 9, 11–12, 33–34, 66, 75–76, 80–85, 89–100, 129, 136, 159–160, 164, 169, 174–179, 183–185, 270, 281–302,

E

East Africa, 5, 17–30 East Asia, 9, 281–302, 341–349 El Niño/Southern Oscillation (ENSO), 75, 80, 93, 160–161, 185, 379, 388, 391 esker aquifer, 305–318 Europe, 7–10, 13, 191–202, 227–247, 305–318, 323–334, 351–363

351, 358–361, 371–372, 378–385, 391

F

Finland, 9, 12, 305–318, 351–352 France, 10, 13, 351–356, 359, 362

G

General Circulation Model (GCM), 8, 23–29, 61, 73, 92–93, 185, 191, 194–195, 197–198, 201, 254–257, " 352–357, 379, 389

GENESIS, 318

- Global Land Data Assimilation System (GLDAS), 33, 38, 41, 43, 170, 182, 371
- GRACE (Gravity Recovery and Climate Experiment), 3, 5, 7, 9–11, 13, 33–47, 125, 169–185, 327, 333–334, 341–345, 367–374, 388–389, 392
- GRAPHIC (Groundwater Resources Assessment under the Pressures of Humanity and Climate Change), 2–3, 29–30, 40, 50–52, 68–69, 75, 77–79, 117, 132, 146, 151, 176, 201, 209, 228, 254, 269, 282, 326, 342–343, 362, 368
- groundwater age dating, 7, 150
- groundwater availability, 1, 12, 29, 66, 79, 89, 132, 152, 265, 358, 360, 362, 367
- groundwater dependent ecosystems (GDE), 1, 49, 129, 146, 149, 192, 249, 254, 270, 274, 305–318, 325, 360, 373, 378, 383, 385–389
- groundwater quality, 7, 11, 138, 141, 145–165, 265, 300–301, 313, 367, 392
- groundwater residence time, 129, 141–142, 157, 160, 163, 268, 316, 325,
 - 332, 343, 368, 381, 388, 390, 393
- groundwater storage, 11–13, 20, 29, 34, 36–38, 40–42, 46, 169, 175–176, 179 181–183, 265, 281–282, 286, 292–295, 299–302, 327, 341–344, 347–348, 367–374, 388, 391–392
- groundwater sustainability, 1, 11, 13, 23, 75, 77, 79, 85, 145–146, 152–165, 362, 377–393
- Guadalquivir river, 10, 13, 351–356, 360

H

Hydrologic Evaluation of Landfill Performance (HELP), 38 High Plains aquifer, 7, 11, 145–165, 378, 381–382 Hurricane Frances, 11, 63–73, 379

I

Intergovernmental Panel on Climate Change (IPCC), 1, 23, 39, 117, 122, 129–130, 185, 191–192, 195, 234, 268, 306, 326, 350, 352, 354, 374, 377 India, 10, 13, 367–368, 370, 372–373 Island aquifers, 5–7, 11–12, 63–73, 75–105, 191–202 Israel, 8, 11–12, 205–223 383 Italy, 10, 13, 351–356, 359–361 Iullemmeden Basin, 6, 11, 113–125,

J

381-382

Jakarta, 9, 341-342, 344, 347-348

L

land clearing, 11, 113–125, 169–171, 175–179, 183, 382 land subsidence, 8, 12–13, 227–247, 282, 341–342, 347348, 368, 383 land–use change, 11, 73, 152–154, 191, 307, 310–311, 378, 380–382

Μ

Majorca, 7, 12, 191–202, 383 Manila, 9, 341–342, 347–348 Mali, 5, 11, 33–47, 114, 117, 120, 378, 380, 389 Medway river, 10, 13, 351, 353–354, 356, 358 Mediterranean region, 7–8, 10–12, 129–130, 133, 141, 191–202, 205–223, 351, 362, 382 Mitano River Basin, 5, 17–30 MODFLOW, 46, 191, 195, 197, 234, 238, 258, 268, 290, 344 Morocco, 6, 11, 129–142, 382 Mountain watershed, 12, 249-262, 393 Murray Groundwater Basin, 7, 11, 169-185, 381-382

Ν

NAWQA (National Water Quality Assessment), 146 Niger, 6, 11, 113–125 Niger River Basin, 5, 33–46 Nigeria, 6, 11, 113–125 North Africa, 6, 129–142 North America, 7, 8, 10, 145–167, 249–262, 367–374, 384 North Andros Island, 5, 11, 63–73, 379–380 North Atlantic Oscillation, 310, 318, 388, 391 Norway, 9, 12, 323–334, 387

0

Ogallala Formation, 148 Osaka, 9, 341–342, 344–348

P

Pacific Decadal Oscillation, 160–161, 388, 391 Pacific Island countries, 6, 11, 75–105, 378–380, 390 permafrost, 9, 12, 323–334, 386–387 Po river, 10, 13, 351, 353–354, 356, 361

Q

quality: see water quality

R

recharge, 3, 5–10, 17–30, 33–46, 52–55, 63–72, 75–105, 113–125, 129–142, 145–164, 169–185, 191–202, 205–222, 229–245, 249–262, 265, 267–276, 281–302, 305–318, 323–334, 339–342, 345–347, , 349–361, 368–374, 378–393 Rijnland, 8, 227–247

S

saltwater (seawater) intrusion, 1, 5, 6, 8, 66–68, 71, 75–76, 85, 89–90, 129, 132, 138, 198, 205–206, 214–216, 227, 313, 367, 378–379, 382, 383–386, 392 Santa Fe province, 8, 11–12, 265–276, 383, 391 saprock–saprolite aquifer system, 17–30, 378 sea–level rise, 8, 11–12, 63, 69, 77, 90–92, 205–207, 211–214, 220, 222, 227–247, 378, 383–384

Seine river, 10, 13, 351, 353–354, 356, 359 Seoul, 9, 341-342, 344-347, source-transport-receptor model, 150 Souss-Massa basin, 6, 11, 129-142 Spain, 7, 10–13, 191–192, 351–356, 360, 383, 389, 392 storm surge, 5, 11, 63–73, 75, 89–92, 378-380 South America, 5, 8, 49–61, 265–276, 378, 380, 383, 391 storage: see groundwater storage submarine discharge, 76 subpermafrost groundwater (aquifers), 9, 12, 323–334, 386–387 Sub–Saharan Africa, 5, 11, 17–30, 33–47, 113-125, 183, 378-380 Svalbard peninsula, 9, 12, 323-334, 387

Т

Taipei, 9, 341–342, 344, 347–348 terrestrial water storage anomalies, 33 The Netherlands, 8, 11–12, 206, 227–247, 352, 383–384 Tokyo, 9, 341–342, 344–348 trench and conduit system, 63, 66–72, 379–380

U

Uganda, 5, 11, 17–30, 378 United Kingdom, 10, 13, 351, 353–354, 356, 358 United States, 7, 11, 145–167, 367–372, 378 Urban subsurface environment, 9, 13, 341–349 uncertainty, 17, 26, 34, 184, 191, 197, 201, 234, 270, 276, 317, 342, 361, 370, 378–379, 393 unsaturated zone, 38, 145, 147, 150–162, 171, 194, 360

V

vadose zone, 1, 38, 123, 222, 272, 381, 389 valley–bottom aquifer system, 249–262 4 Subject Index

W

water balance, 194, 198, 208, 267–268, 342, 358

water table fluctuation method, 33–46

water quality, 1, 3, 67, 75, 94, 129, 138,

145–164, 229, 265, 271, 276, 301, 313,

347, 367, 378, 380, 382, 384, 388, 390, 392

West Africa, 5–6, 33–47, 113–125, 183, 378, 381–382

Climate change is expected to modify the hydrological cycle and affect freshwater resources. Groundwater is a critical source of fresh drinking water for almost half of the world's population and it also supplies irrigated agriculture. Groundwater is also important in sustaining streams, lakes, wetlands, and associated ecosystems. But despite this, knowledge about the impact of climate change on groundwater quantity and quality is limited.

Direct impacts of climate change on natural processes (groundwater recharge, discharge, storage, saltwater intrusion, biogeochemical reactions, chemical fate and transport) may be exacerbated by human activities (indirect impacts). Increased groundwater abstraction, for example, may be needed in areas with unsustainable or contaminated surface water resources caused by droughts and floods. Climate change effects on groundwater resources are, therefore, closely linked to other global change drivers, including population growth, urbanization and land-use change, coupled with other socio-economic and political trends. Groundwater response to global changes is a complex function that depends on climate change and variability, topography, aquifer characteristics, vegetation dynamics, and human activities.

This volume contains case studies from diverse aquifer systems, scientific methods, and climatic settings that have been conducted globally under the framework of the UNESCO-IHP project Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC). This book presents a current and global synthesis of scientific findings and policy recommendations for scientists, water managers and policy makers towards adaptive management of groundwater sustainability under future climate change and variability.

6000 Broken Sound Parkway, NW Suite 300, Boca Raton, FL 33487 Schipholweg 107C 2316 XC Leiden, NL 2 Park Square, Milton Park Abingdon, Oxon OX14 4RN, UK

an informa business