<
 
 
 
 
×
>
You are viewing an archived web page, collected at the request of United Nations Educational, Scientific and Cultural Organization (UNESCO) using Archive-It. This page was captured on 15:46:55 Dec 01, 2018, and is part of the UNESCO collection. The information on this web page may be out of date. See All versions of this archived page.
Loading media information hide

UNESCO Science Report

Key messages

UNESCO Science Report, Towards 2030

 

  • The number of international students rose by 46% between 2005 and 2013: from 2.8 million to 4.1 million. Countries are striving to attract and retain talent to drive the knowledge economy to which they aspire or to maintain their international competitiveness. It is not a coincidence that the USA, the UK and France host the largest contingents of international PhD students in science and engineering. Perhaps more surprisingly, governments themselves are accompanying this movement. A number of countries of different income levels are now fostering the greater international mobility of their graduate students through scholarships and other means, to ensure that they acquire a wide spectrum of skills and experience (e.g. European Union, Brazil, Saudi Arabia, Viet Nam). The European Union is even planning to instigate a ‘scientific visa’ to facilitate mobility around Europe. In parallel, countries are upgrading their own higher education and research infrastructure. Studies conducted across Europe have shown that a high level of mobility by qualified personnel across countries and between the public and private sectors contributes to the overall professionalism of the labour force, as well as to the innovative performance of the economy.

    This trend towards greater scientific mobility is accompanied by another: the growing number of private firms that are relocating their research laboratories abroad. Although universities are collaborating much more internationally than before, their infrastructure tends to be less physically mobile than that of private firms, with only a minority setting up campuses abroad. The private sector thus has a potentially considerable role to play in spreading the ‘resource balance’ in science and technology around the world.

  • Overall, the years 2009–2014 have been a difficult transition period. Ushered in by the global financial crisis of 2008, this transition has been marked by a severe debt crisis in the wealthier countries, uncertainty over the strength of the ensuing recovery and the quest for an effective growth strategy. Many high-income countries are faced with similar challenges, such as an ageing society (USA, EU, Japan, etc.) and chronic low growth; all are confronted with tough international competition. Even those countries that are doing well, such as Israel and the Republic of Korea, fret over how to maintain their edge in a rapidly evolving world.

    One growth strategy being adopted by countries is advanced manufacturing. Information technology is driving what has been termed the Fourth Industrial Revolution. A growing number of countries are developing smart manufacturing technologies to revitalize industry, such as cyber-physical systems, including Canada, China, France, Germany, India, the Republic of Korea and the USA. A wide range of industrial products now incorporate information technology. Examples include three-dimensional printers, connected reality, next-generation robotics, smart biomedical machines and self-driving cars. There is also a growing tendency to use information technology to develop futuristic, hyper-connected smart cities (e.g. China, Republic of Korea) capable of offering more efficient public services in the field of water, energy, transportation and so on.

    In the USA, the Obama administration has made investment in climate change research, energy and health a priority but much of its growth strategy has been contraried by the congressional priority of reducing the federal budget deficit. In 2010, the EU adopted its own growth strategy, Europe 2020, to help the region emerge from the crisis by embracing smart, sustainable and inclusive growth. The strategy observed that ‘the crisis has wiped out years of economic and social progress and exposed structural weaknesses in Europe’s economy’. These structural weaknesses include low R&D spending, market barriers and insufficient use of information and communication technologies (ICTs). Horizon 2020, the EU’s current seven-year framework programme for research and innovation, has received the biggest budget ever in order to drive this agenda between 2014 and 2020. The 2020 Strategy adopted by Southeast Europe mirrors that of its EU namesake but, in this case, the primary aim of this growth strategy is to prepare countries for their future accession to the EU.

    Japan is one of the world’s big spenders on R&D but its self-confidence has been shaken in recent years, not only by the triple catastrophe in 2011 but also by the failure to shake off the deflation that has stifled the economy for the past 20 years. The effects of a low-growth equilibrium on investor confidence are visible in the reluctance of Japanese firms to raise R&D spending or staff salaries and in their aversion to the necessary risk-taking to launch a new growth cycle.

    The Republic of Korea is seeking its own growth strategy. Although it came through the global financial crisis remarkably unscathed, it has outgrown its ‘catch-up model.’ Competition with China and Japan is intense, exports are slipping and global demand is evolving towards green growth. Like Japan, it is faced with a rapidly ageing population and declining birthrates that challenge its long-term economic development prospects. The Park Geun-hye administration is pursuing her predecessor’s goal of ‘low carbon, green growth’ but also emphasizing the ‘creative economy,’ in an effort to revitalize the manufacturing sector through the emergence of new creative industries and greater entrepreneurship.

    Among the BRICS (Brazil, Russian Federation, India, China and South Africa), China has managed to dodge the fallout from the 2008 global financial and economic crisis but its economy was showing signs of strain4 in mid-2015. Up until now, China has relied upon public expenditure to drive growth but, with investor confidence faltering in August 2015, China’s desired switch from export-orientation to more consumption-driven growth has been thrown into doubt. There is also some concern among the political leadership that the massive investment in R&D over the past decade is not being matched by scientific output. China, too, is in search of an effective growth strategy. By maintaining a strong demand for commodities to fuel its rapid growth, China has buffeted resource-exporting economies since 2008 from the drop in demand from North America and the EU. Ultimately, however, the cyclical boom in commodities has come to an end, revealing structural weaknesses in Brazil and the Russian Federation, in particular.

    Meanwhile, in India, growth has remained at the respectable level of about 5% in the past few years but there are concerns that economic growth is not creating enough jobs. Today, India’s economy is dominated by the services sector (57% of GDP). The Modi government elected in 2014 has argued for a new economic model based on export-oriented manufacturing to foster job creation. India is already becoming a hub for frugal innovation, thanks to the large domestic market for pro-poor products and services such as low-cost medical devices and cheap cars.

    With the end of the commodities boom, Latin America is, itself, in search of a new growth strategy. Over the past decade, the region has reduced its exceptionally high levels of economic inequality but, as global demand for raw materials has fallen, Latin America’s own growth rates have begun stagnating or even contracting in some cases. Latin American countries are not lacking in policy initiatives or in the sophistication of institutional structures to promote science and research. Countries have made great strides in terms of access to higher education, scientific mobility and output. Few, however, appear to have used the commodities boom to embrace technology-driven competitiveness. Looking ahead, the region may be well placed to develop the type of scientific excellence that can underpin green growth by combining its natural advantages in biological diversity and its strengths with regard to indigenous (traditional) knowledge systems.

    The long-term planning documents to 2020 or 2030 of many low- and middle-income countries also reflect the quest for a growth strategy able to carry them into a higher income bracket. These ‘vision’ documents tend to have a triple focus: better governance, in order to improve the business environment and attract foreign investment to develop a dynamic private sector; more inclusive growth, to reduce poverty levels and inequality; and environmental sustainability, to protect the natural resources on which most of these economies depend for foreign exchange.

  • A large number of countries are now incorporating science, technology and innovation in their national development agenda. More governments are coming to realize that their plans to diversify and modernize the economy will be thwarted, if they cannot call upon a critical mass of skilled personnel, including scientists, engineers and technicians, to drive an economy that is to be less reliant on raw materials and more rooted in knowledge.

    Despite the economic and financial crisis of 2008–2009, expenditure on research and development rose by 30.5% between 2007 and 2013, more than global gross domestic product (up 20%). There has been a convergence in the level of public commitment to R&D in the past five years. Whereas wealthy countries have cut back their commitment as part of a wider austerity drive, lower income countries (e.g. Kenya) have stepped up their own public commitment. This convergence is not yet visible in the global data for research expenditure because the business sector in higher income countries has maintained or increased its own spending on R&D, despite the crisis.

    The number of researchers worldwide progressed by 21% between 2007 and 2013. Less than one-third of researchers are women (28%), on average, but a growing number of countries are putting policies in place to correct this imbalance. Moreover, the greatest shares of female researchers are not always to be found in the most developed regions: in Latin America and the Caribbean, for instance, 44% of researchers are women and, in the Arab States, 37%, compared to 33% in the European Union.

    The number of scientific publications worldwide progressed by 23% between 2008 and 2014 but the growth rate was much higher in upper middle-income (95%) and low-income (68%) countries. We are witnessing an ongoing process of ‘multipolarization’ of scientific production, research and innovation. Scientists are not only publishing more in internationally catalogued journals but also co-authoring a greater share of papers with foreign partners. Internet is fostering ‘open access’ to information and data. Several middle-income countries are becoming hubs for nanotechnology – or harbour this ambition – , including Brazil, China, India, Iran, Malaysia and the Russian Federation.

    Most R&D is taking place in high-income countries but innovation of some kind is now occurring across the full spectrum of income levels. This innovation may take the form of R&D, or manifest itself, for example, in the acquisition of related equipment. According to a survey of manufacturing firms in 65 countries of various income levels conducted by the UNESCO Institute for Statistics in 2013, summarized in the report, more than half of the firms surveyed were engaged in innovation unrelated to R&D.

  • Faced with a moribund economy, it can be tempting to divert public resources towards commercial applications, to the detriment of basic research and public good science. Governments in high-income countries need to recognize that ‘science powers commerce – but not only,’ in the words of one of the report’s authors. It is a question of balance. A sustained public investment in basic and high-risk research makes economic sense, since neglecting them leads to a smaller pool of new knowledge, which, in turn, means that there will be less science to commercialize in the years to come. Switzerland, for example, is a global innovation leader but also devotes about 30% of R&D expenditure to basic research.

    As predicted in the UNESCO Science Report 2010, international diplomacy has increasingly taken the form of science diplomacy in recent years. Countries at all stages of development stand to gain from this trend but the spirit of co-operation and solidarity that has characterized development partners up until now must be preserved. Trade relations are important but international relations must not be confined to trade. Achieving many of the Sustainable Development Goals (Agenda 2030) will depend not only on the diffusion of technology but also on how well countries partner with one another in the pursuit of science to solve pressing social and environmental problems and to ensure that nobody is left behind.

  • The UNESCO Science Report 2010 had observed a paradigm shift towards greener growth. It is evident from the current report that this trend has since accelerated and is seducing an ever-greater number of countries, even if levels of public investment may not always be commensurate with ambitions. Partly as a result of the commodities boom over the past decade, countries have become more aware of the value of their natural capital. Those that have anticipated the end of this cyclical boom in commodities are already implementing strategies to diversify their economies, in order to reduce their dependence on fluctuating global market prices for raw materials. In many countries, this strategy focuses on developing a knowledge economy.

    For many developing countries, sustainable development is an integral part of their national development plans for the next ten to twenty years. National and regional policy orientations may also be inspired by the desire to develop coping strategies to protect agriculture, reduce disaster risk and/or ensure energy security, such as by diversifying the national energy mix and improving energy efficiency. Even some oil-rent economies have invested in renewable energy in recent years, such as Algeria (solar and wind). Most of the social innovation observed in East and Central Africa since 2009 tackles pressing development issues, such as overcoming food insecurity, mitigating climate change or the transition to renewable energy. Around the world, there is a growing tendency to develop futuristic hyper-connected smart cities or ‘green’ cities which use the latest technology to improve efficiency in water and energy use, construction materials, transportation and so on.

    Among high-income countries, a firm commitment to sustainable development is often coupled with the desire to maintain competitiveness in global markets that are increasingly leaning towards green technologies. This is the case, for example, in the European Union, Japan and the Republic of Korea. Mitsubishi Heavy Industries in Japan, for instance, has developed a jet airliner which it hopes will conquer the global market, thanks to its high fuel efficiency, low environmental impact and minimal noise. The company began developing the aircraft in 2003, after the Ministry of the Economy, Trade and Industry announced that it would subsidize such an undertaking.

     

You may also like to consult or download the Executive Summary of the report's findings (AR, EN, CAT, FR, ES, POR, RU), or a series of Powerpoint presentations and posters summarizing these and other key messages from the report.