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Summary

Background
This paper is presented to explain the methodology followed during the:

1) creating of a content and skills framework for mathematics from cognitive theory and
various national curricula, and

2) development of a coding scheme to map various national assessment frameworks
(NAFs) onto the framework.

The approach followed was intended as a way to model inter-jurisdictional mathematics
assessments during the first eight years of formal schooling, within the broader objective of
monitoring progress towards SDG 4, Indicator 4.1.1:

4.1: By 2030, ensure that all girls and boys complete free, equitable and quality primary and
secondary education leading to relevant and effective learning outcomes.

4.1.1 Proportion of children and young people: (a) in grades 2/3; (b) at the end of primary; and
(c) at the end of lower secondary achieving at least a minimum proficiency level in (i) reading and
(i) mathematics, by sex.

Defining Mathematics

There are various theories about how people learn and do mathematics. The Global
Content Framework builds upon three definitions:

1. Mathematics literacy was proposed by PISA developers to describe abilities one’s
capacity to formulate, employ and interpret mathematics in various contexts (OECD,
2012).

2. Mathematics proficiency, on the other hand, is defined as what one knows, can do,
and is disposed to do (Schoenfeld, 2007).

3. Mathematics competency combines a domain-based developmental interpretation
of growth with a process-based interpretation of how children learn and do
mathematics (Niss & Hgjgaard, 2009).

These theories focus on mental attributes believed to be engaged when one is actively
negotiating solutions to mathematics tasks, but they generally lack detail about task types
and requirements and they rarely include a developmental focus. Curriculum, however,
provides sufficient detail and can be used to develop a tool to effectively address SDG 4
Targets.

Using curriculum as a basis

There are three things that make curriculum attractive as a basis for the development of
the Global Content Framework:

1. Curriculum has far greater “cash value” than theory. Millions of children come to
understand mathematics as a result of curricular interpretations. It is curriculum
that de facto defines mathematics for the millions worldwide lucky enough to receive
any instruction.

2. Curriculum documents are built around detailed learning expectations organized in
developmental sequence. Similarities in curriculum construction present an
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opportunity to identify a common international reference list of detailed learning
expectations.

3. Curriculum designers are more concerned with practicalities about how we
appropriate mathematical ideas and generally less concerned with ensuring the
logical structure of mathematics as a discipline is preserved.

National Assessment Frameworks (NAFs)

In many jurisdictions teaching and learning intentions have shifted from a focus on inputs
associated with educational access and moved towards measuring specific outcomes. And
increasingly, outcomes are described in terms of specific competencies with which children
must demonstrate some facility before it can be assumed they are mathematically
competent. As a result, there has been an inexorable shift towards testing to provide evidence
of systemic educational effectiveness. Just as curriculum documents can be likened to
educational intentions, national and international assessment frameworks can be likened
to jurisdictional testing intentions (i.e., intended question types and scope). Assessment
frameworks are outlines, therefore, that provide examples of task-types deemed to be of
sufficient jurisdictional importance to warrant testing. As mentioned, scope of testable tasks
always represent sub-sets of learning expectations defined in related curriculum.

Outcomes

Reference List

1. English-, French- and Spanish-language curriculum documents were transcribed into a
common framework and organized by year (years 1 to 8). A five-level framework (from
broadest to most specific: Domains, Sub-domains, Constructs, Sub-constructs, and
Action: Target) was selected from theory and various curricula to organize learning
expectations. Few national curriculum documents were explicitly designed to fit the five-
level framework. Therefore, protocols were established to address such emerging
problems.

2. Using a constant comparison approach, three Reference Lists by language root (English,
French, and Spanish) emerged, which helped to interpret differences within respective
language-domain frameworks and as such to preserve national curriculum expressions.

3. The last stage involved condensing the three Reference Lists to a single representative list
using the same constant comparison method (Glaser, 1965).

Coding Scheme to map NAFs

The Coding Scheme was created using the same Domain to Sub-Construct framework
developed for the Reference List. It was intended to guide any coder to locate specific NAF
item-types onto the curriculum side of the model.

The final framework is an arbitrary four-level framework: labelled as domains, sub-
domains, constructs, and sub-constructs.

1. Domains are the broadest structural component, consisting of Mathematical
Proficiency, Number and Number Systems, Measurement, Geometry, Statistics and
Probability and Algebra.

2. Sub-domains, meanwhile, are broad content structures contained within DOMAINs

3. Constructs and Sub-constructs represent the broadest mathematical content
structures existing within sub-domains and constructs respectively.

The make-up of the final four-level framework was informed by the selection of
curriculum documents used to develop it (this is why it is essentially arbitrary).
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As part of UNESCO’s Education 2030 framework
for action, the Institute for Statistics (UIS) is leading
development of global indicators intended to track the
progress of Sustainable Development Goal four (SDG-
4). The overall objective is development of comparable
trans-national indicators by encouraging, where appro-
priate, new methods, statistical approaches and moni-
toring/reporting tools. We addressed the SDG-4 overall
objective by creating a way to model inter-jurisdictional
mathematics assessments during the first eight years of
formal schooling. The approach was specifically in-
tended to: (1) create a content and skills framework for
mathematics from cognitive theory and various national
curricula; and (2) develop a coding scheme to map var-
ious national assessment frameworks (NAF) onto the
framework. This document is a critical appraisal of the
methodology used to achieve these two goals.

Rationale

Not all children who study mathematics enjoy equal
opportunities to learn (OtL) mathematics. While this
may seem platitudinous, almost too obvious to state, it
is a useful starting point in the current discussion. The
pivotal phrase, OtL, is traditionally defined with respect
to heterogeneity in external factors such as curriculum,
schools, teaching approaches and social or cultural ac-
cess (e.g., Carroll, 1963; Choi & Chang, 2011; Cross,
2009; Schmidt, Cogan, Houang & McKnight, 2011).
Windfield (1987), for example, characterized it as the
provision of adequate and timely instruction prior to
tests or examinations. The term, however, can also be
thought of in another way; one, moreover, that aligns
more closely with modern testing. Carpenter and Moser
(1983) studied students’ learning differences in primary
mathematics classrooms. They followed a cohort of
children from Grade 1 and found that by the time stu-

dents reached Grade 3, 11% had yet to master number
facts to 10 and 30% had not mastered facts beyond 10.
Perplexed, the researchers compared student responses
to different types of problems to explain the observed
variability but they finally conceded that there was no
outward reason; a conclusion made all the more vexing
as these students and their teachers had been offered in-
tensive support and advice throughout the study period.
Thus difference in this case could only be explained by
internal, or cognitive, factors suggesting that one’s op-
portunities to learn are also linked to differences in men-
tal attributes (Cunningham, 2012). Although more of-
ten investigated as test results in psychological research,
cognitive factors have been framed in terms such as
differences in working memory capacity (e.g., Geary,
2004; Meyer, Salimpoor, Wu, Geary & Menon, 2010),
cultural heterogeneity (e.g., Chui, Chow & McBride-
Chang, 2007), or differences in ways in which individu-
als process conceptual and procedural knowledge (e.g.,
Hallet, Nunes & Bryant, 2010). The trouble is, edu-
cational testing and decisions that fall from test results
rarely take into account the complexity of mathemat-
ics OtL (c.f., Pellegrino, Chudowsky & Glaser, 2001;
Schoenfeld, 2007).

And this is especially problematic when design-
ing an approach to meet SDG-4 goals because there
is arguably far more complexity when making inter-
jurisdictional comparisons than is normally encoun-
tered in studies of intra-jurisdictional differences. For
in addition to human variability in cognitive factors,
countries differ widely in their interpretation of such
things as mathematics curriculum, teaching approaches,
schooling, and testing; all of which conspire to make
test interpretation and reporting more challenging. But
if a nuanced model could be developed—one that ac-
counts for some jurisdictional variation in external
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factors—it would undoubtedly enhance our ability to
interpret observed inter-jurisdictional differences and
more firmly ground systemic reform efforts.

An effective, more nuanced, model should arguably
be based upon a stable set of external reference indica-
tors as they will make it possible to calibrate judgments
about mathematics test results on some sort of standard.
Inter-jurisdictional comparisons or specific recommen-
dations for reform can then be relatively assessed and
validated. But having said this, there are real limits in
our current ability to capture complexity in external fac-
tors. Data constraints being what they are, it is difficult
to explicitly model social, cultural, or structural edu-
cational variability. So instead, the reference list will
be constructed from cognitive theory about how chil-
dren learn and do mathematics and how this maps onto
details of various national curricula. National curricu-
lum documents provide evidence about what jurisdic-
tions regard as important with respect to teaching math-
ematics and learning sequencing, and thereby contain
important external OtL information. Ultimately, robust-
ness of a curriculum-based reference set and any sub-
sequent determinations derived from it will rely on in-
ternational consensus about appropriate reference indi-
cators. Then, using this reference set as a foundation,
a coding scheme can be developed to map various na-
tional assessment frameworks. The resulting model is
henceforth referred to as the Reference List & Coding
Scheme or RL&CS framework (see Figure 1). To con-
clude, this approach addresses SDG-4 by establishing
a more complex interpretive environment than is pos-
sible if trans-national indicators are founded on quanti-
tative metrics alone. Complexity, however, introduces
new assumptions, opportunities and threats. The cur-
rent document is an appraisal of the methodology used
in developing the approach.

Theoretical Background

The theoretical case for the RL&CS model ulti-
mately rests on a cognitive understanding about how
children learn and do mathematics. Thus theory is used
to ground model claims. Details of various national cur-
riculum documents can then be mapped onto the cogni-
tive model to create a theory—curriculum reference list.
This, in turn, forms the foundation of a coding scheme
designed to map national assessment frameworks.

| [ 8

5

= (%)

> 3] g
= o= °

o E E

2 2 M :

= s} (7] -

£ = = &

[3] %)

2 & @ g
= o~

0 @ S =g

=) = 8 <

© E 1" «M 3

[ = g

2]

Figure 1. lIllustration of the proposed RL&CS model
for mathematics

Theories about Learning and Doing Mathematics

Theories about mathematical capability (also vari-
ously referred to as ability, literacy, proficiency and
competency) provide conceptual descriptions for how
people learn and do mathematics. They are used to ra-
tionalize such things as test design and item selection,
and to shed light on the nature of mathematical cogni-
tion. Theory also often informs curriculum design.

Mathematics ability. E. H. Haertel and Wiley
(1993) defined ability as the demonstration of proce-
dural and conceptual knowledge and skills necessary
for successful task performance. Ability is an estimable
construct, however, only when analysis of performance
is constrained to measurable features of tasks when
completed in specific contexts. But it turns out that
even if we constrain measurable features of tasks to be
estimable there often remains difficult questions about
what counts as knowledge and skills, the composition
of estimable features, and the nature of appropriate con-
texts. Indeed, understanding how theory, measurable
features of tasks and context coalesce to a working no-
tion of ability inevitably involves a good deal of inter-
pretation (E. Haertel, 1981).

Pellegrino et al. (2001) concurred with Haertel and
Wiley’s position adding that assessments of what chil-
dren know and can do should be founded on a clear
understanding of how interpretation is linked to cogni-
tion and observation. Hence, if cognition is a set of
theories about how children learn and develop, and ob-
servation is defined as the kinds of tasks that evoke es-
timable demonstrations of ability then whatever notion
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we hold about ability is at least partly based on theoreti-
cal rationale and partly on our interpretation of what we
observe. Thus the concept of ability, its estimation and
interpretation are very slippery things.

Mathematics literacy. Proposed by PISA devel-
opers to describe abilities of an average 15-year-old,
mathematics literacy embodies one’s capacity to for-
mulate, employ and interpret mathematics in vari-
ous contexts. These include reasoning, applying con-
cepts, procedures, facts, and tools to describe, ex-
plain, and predict problem situations. A literate in-
dividual applies mathematical statements to and from
the world reflecting well-founded capacity for judgment
and decision-making that we would expect to be ex-
hibited by constructive, engaged and reflective citizens
(OECD, 2013).

The notion of literacy is founded on the exis-
tence of mathematical processes: students’ abilities
to (1) formulate situations mathematically; (2) employ
mathematical concepts, facts, procedures and reason-
ing; and (3) interpret, apply and evaluate mathemat-
ical outcomes. PISA developers associated processes
with mathematical knowledge domains to reflect ma-
jor themes in various national curriculum documents.
Developers called these domains Change and Relation-
ships, Space and Shape, Quantity, and Uncertainty and
Data. Presumably mathematical processes and knowl-
edge domains are intimately linked so that a person who
engages a question from any domain does so by mar-
shalling mental attributes from among these mathemat-
ical processes. But ideas about mathematics literacy
were principally developed to create robust test items,
interpret students’ responses and report results. Such
things as details about the nature of items and how they
are created is often proprietorial so there is little in the
way of publicly available information about items and
mathematical domains currently in use.

Mathematics proficiency. Schoenfeld (2007) de-
fined the concept of proficiency to describe what one
knows, can do, and is disposed to do. This idea
embraces demonstrated facility with: (1) mathemat-
ical knowledge—facts and skills required for under-
standing mathematics in a specific context; (2) strat-
egy use—formulating, representing, and solving prob-
lems; (3) metacognition—reflecting on problem solving
progress during problem engagement; and (4) beliefs
and dispositions—one’s inclination to regard mathemat-

ics as sensible, useful and worthwhile.

As a theoretical entity, proficiency closely resembles
the process component of mathematics literacy. It pro-
vides a framework for making sense of cognitive events
which must be present as people engage mathematical
tasks in the moment. Proficiency is not concerned, how-
ever, with content or skills associated with particular
tasks or with how mastery develops over time. Instead,
it is a theory which describes general cognitive features
associated with learning and doing mathematics in any
situation. Trouble is, when it comes to descriptions of
different contexts, task types and mastery, interpretive
differences inevitably arise.

Mathematics Competency. Jensen and Niss spec-
ify what it means to incrementally master mathematics
through time with their cognitive theory of competence
(Jensen, 2007; Niss & Hgjgaard, 2011). Broadly speak-
ing, a mathematical competency is a well-informed
readiness to act appropriately in mathematically chal-
lenging situations. It is associated with one’s ability to
ask and answer questions coupled with facility in the
use of mathematical language and tools. Hence ability
to ask and answer in, with and about mathematics is
demonstrable through one’s knowledge and skill with
reasoning, modelling (i.e., ability to analyze proper-
ties of existing models and to actively model in given
contexts and including ability to self-monitor), problem
tackling (i.e., ability to pose and partly solve mathe-
matical problems), and mathematical thinking (i.e., the
nature, not content, of mathematical questions and an-
swers). The ability to deal with mathematical language
and tools, meanwhile, is demonstrated through various
representations, symbols and formalisms, communica-
tion and the use of appropriate aids and tools. But gen-
erally speaking, competency theory is consistent with
process components associated with other theories.

Competency stands apart from other theories in its
linkage of cognition with content domains and math-
ematical development. Content domains are reminis-
cent of PISA, hence: Number Domains (i.e., concept
of number and number systems); Arithmetic (i.e., four
basic arithmetic operations, percentage and estimation
and approximation); Algebra (i.e., characteristics of
compositions applied to various sets of objects, oper-
ating rules, equations and solving problems); Geom-
etry (i.e., properties of descriptive planar and spatial
objects, geometric measurement, coordinate systems
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and investigations); Functions (i.e., nature of functions,
graphs of functions, linear and non-linear functions, ra-
tional functions, trigonometric functions, power func-
tions and exponential functions); Calculus (i.e., conti-
nuity and limits of functions, differentiation, integra-
tion, differential equations and sequences); Probability
(i.e. randomness and probability, combinatorial prob-
abilities and finite spaces, stochastic models and prob-
ability theory); Statistics (i.e., organizing, interpreting
and drawing conclusions about quantitative data, de-
scriptive statistics, hypothesis testing, planning exper-
iments); Discrete Mathematics (i.e., investigations of
finite collections of objects, counting methods, com-
binatorics, number theory and graphs and networks);
and Optimization (i.e., local and global extremes of
real functions, optimization under constraints and lin-
ear programming) are organized in developmental se-
quence.

Niss and Hgjgaard (2011) identified and organized
mathematics content domains in their model using lan-
guage and interpretations that are consistent with math-
ematics as a discipline. Hence terms such as "algebra"
or "geometry" are used instead of phenomenological
descriptors like "form and shape" or "measurement."
Table 1 summarizes the developmental architecture for
the first 8 years of formal schooling.

Table 1

lllustration of Mathematics Competency content do-
mains arranged in developmental sequence (Niss &
Hgjgaard, 2011)

Grades
DOMAINS 1-3 4-6 7-8
Number A A A
Arithmetic A A A
Geometry A A A
Functions A A
Probability A A
Statistics A A
Discrete Math A A

Mathematics Curriculum Documents

Curriculum documents reflect societal agreement
about what is important to teach, why, when it is to
be learned, and how this all should be accomplished
(Pratt, 1994; Tedesco, Opertti & Amadio, 2013). In
other words, they are jurisdictional interpretations ex-
pressed as educational intentions roughly arranged in
developmental sequence. This is the intended curricu-
lum and not to be confused with how curriculum is ac-
tually implemented (i.e., what happens in classrooms)
or what sense students make of what is taught (i.e., the
attained curriculum ; Remillard & Heck, 2014). Need-
less to say, there is potential for substantial variabil-
ity in how documents are interpreted and sequenced at
each of these steps. But details and sequencing differ-
ences among inter-jurisdictional curriculum documents
notwithstanding, four things make curricula very attrac-
tive templates from which to build an international ref-
erence list.

First, curriculum documents have a far greater "cash
value" than theory. Consider the number of people who
read about and understand cognitive theory versus the
hundreds of millions of children who are subjected to
curriculum each year. Regardless of whether or not cog-
nitive theory presents a truer picture about how people
mathematize, it is curriculum (and the myriad of tests
designed from curriculum) that de facto defines math-
ematics for millions. Indeed, this is particularly true
of mathematics as there is overwhelming evidence that
outside of school, adults are increasingly less capable of
offering effective help to struggling students beyond the
elementary grades. Thus children make sense of new
mathematical ideas as they are defined, presented and
tested solely in classrooms (Schoenfeld, 2007).

The second reason curricula are attractive templates
from which to build an international reference list has to
do with details and sequencing. Many curriculum doc-
uments include detailed descriptions of knowledge and
skills for teachers and test designers to construct appro-
priate instructional plans and assessment tools. And all
of this detail is conveniently organized in developmen-
tal sequence.

The third reason has to do with broad similarities
in the their construction. Again, national mathemat-
ics content details and sequencing differences notwith-
standing, striking parallels exist among many jurisdic-
tional expressions for mathematics. This is likely due
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to the fact that, other OtL factors being equal and re-
gardless of social or cultural makeup, human beings
tend to develop mathematical expertise similarly. And
it may partly explain why counting with natural num-
bers is easier to learn and precedes more difficult alge-
braic tasks. Broad similarity provides a common basis
from which different curriculum expressions can be or-
ganized.

The fourth reason has to do with the scope of
many curriculum documents. Curriculum designers are
mainly concerned with how children appropriate math-
ematical ideas and are generally less concerned about
the logical structure inherent in mathematics as a dis-
cipline. Thus we develop plans for students’ fo ex-
perience ideas where the term "experience" indicates
a much broader vision than any topic list can encom-
pass (Remillard & Heck, 2014). For example, cur-
riculum documents often include such things as role
playing, practice with summarizing, comparing differ-
ent representational forms, and communication. Cur-
riculum, therefore, involves a much wider scope than
structural components of a particular subject matter.
And this has important ramifications with respect to as-
sessment because testable tasks are restricted to those
which evoke estimable demonstrations (Pellegrino et
al., 2001). Thus curricula, by definition, also encom-
pass far more than their associated test regimes.

Assessment Frameworks

In many jurisdictions teaching and learning inten-
tions have shifted from a focus on inputs associated
with educational access and moved toward measuring
specific educational outcomes (Tedesco et al., 2013).
Increasingly outcomes are described in terms of specific
competencies students’ are required to demonstrate fa-
cility with before we can assume they are fully func-
tioning members of modern society. In other words,
there has been an inexorable shift toward results of test-
ing to provide evidence concerning educational effec-
tiveness.

Just as curriculum documents can be likened to ed-
ucational intentions (i.e., attributes of the intended cur-
riculum), assessment frameworks (whether national or
international) can be likened to testing intentions (i.e.,
attributes of the intended test). And analogously, the in-
tended test differs from the implemented test (i.e., what
items are actually administered) and from the achieved

test (i.e., students’ response scores). Assessment frame-
works are outlines, therefore, that provide examples of
task-types deemed to be of sufficient jurisdictional im-
portance to warrant testing. And it follows that assess-
ment frameworks are restricted in scope to include only
estimable intentions (i.e., subsets of related curriculum
documents).

Theory, Curriculum and Assessment as a Single
Model

Addressing the two goals of this project was accom-
plished by combining theory, curriculum and test infor-
mation together in a single model. As noted, cogni-
tive models for learning and doing mathematics tend
to describe mathematical process. Niss and Hgjgaard’s
(2011) work stands apart because they link process with
mathematics content domains in a developmental se-
quence. Their model, however, lacks sufficient detail
and this is primarily why it is necessary to involve cur-
riculum. So it is the combination of cognitive theory
and curriculum that establishes the Reference List half
of the RL&CS model (see Figure 1). Mapping NAFs
to the Reference List (the second half of the model)
is then facilitated by the creation of a coding scheme
which acts as a bridge between the two model halves.

Modelling theory, curriculum and assessment to-
gether, however, raises important questions about in-
tegrity. First, there is the matter of how closely we
can expect theoretical depictions of how people mathe-
matize and detailed curriculum expectations will actu-
ally map. On the one hand we expect there to be inter-
jurisdictional differences in curriculum content and se-
quencing, while on the other hand, they all map to just
one theoretical description. Although limiting different
curriculum expressions to fit within a single cognitive
interpretation is potentially problematic it is arguably
mitigated if theory is primarily used as a tool to or-
ganize details of various curriculum expressions—rather
than provide a "true" or preferred structure—and, per-
haps more importantly, a cognitive theory grounds the
final model in literature. Mathematical domains in Niss
and Hgjgaard’s work provide roots for a decision tree
that, with input from various curriculum documents,
is successively refined, branching out to include more
and more detailed sub-categories. So the power of this
model lies in its ability to faithfully capture and orga-
nize details of various curriculum expressions.
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Secondly, many countries include details and exam-
ples of what is important to teach and learn organized
year-by-year in a sequence. These details often outline
the kinds of experiences nations want students to have
when engaging mathematical tasks. Many of these ex-
pectations are not tested or cannot be tested in subse-
quent national or international tests, however, so it is not
immediately clear how non-overlapping details should
be interpreted. Arguably, if a theory—curriculum deci-
sion tree faithfully captures something of the scope and
complexity of learning expectations presented in cur-
riculum it does so by faithfully reflecting differences
and similarities whether they are tested or not. So the
result is a detailed trans-national collection of learning
expectations. It follows, if a particular document in-
cludes unique learning expectations not observed else-
where, a new branch is added to the final decision tree.
Or if a curriculum document includes the same or very
similar expectations to others they are subsumed un-
der the existing model framework. Hence the decision
tree evolves in scope and depth to be more and more
comprehensive as new curriculum data is incorporated.
And the result is a comprehensive inter-jurisdictional
description of mathematics education, broader than any
single national expression.

Third, an assessment coding scheme should be based
on the final Reference List. This suggests the need
for consistency in the way we deal with expecta-
tions that address the same underlying concepts. And
such consistency is arguably accomplished by divid-
ing curriculum-based learning expectations into AC-
TION:TARGET pairs. An expectation such as calcu-
late the mean, median and mode of a data set can be
translated into a mathematical ACTION: compute cen-
tral tendency and associated with a specific TARGET:
mean, median, mode. This allows for different curricu-
lar interpretations to be consolidated into the same AC-
TION yet different TARGETSs. Some curriculum doc-
uments, for example, may require students to compute
central tendency using only the mean while others may
require students to compute mode and mean. Identify-
ing variable TARGET components under the same AC-
TIONs allows for a way to qualify inter-jurisdictional
differences in the scope of particular learning expecta-
tions. It also lays the foundation of a quantifiable scale
that can be used to compare jurisdictional variation with
respect to particular ACTIONS.

Fourth, national assessment frameworks typically
provide outlines of desirable item types. Often desir-
able item types can be translated into a required AC-
TION (e.g., add two numbers) and related scope or
TARGET (e.g., up to a combined sum of 99). Simi-
larity between curriculum- and assessment-based AC-
TION:TARGET pairs is facilitated by a coding scheme
which provides a way of aligning the two halves of the
model. In situations where this breaks down (e.g., item
types are obtusely described) it may be necessary to es-
tablish and track interpretive protocols.

Lastly, since the scope of any jurisdictional assess-
ment framework is, by definition, a subset of the con-
tent and skills coverage of the same jurisdiction’s cur-
riculum it follows that details in a final Reference List
can be pragmatically thought of as the universe of
ACTION:TARGET curriculum pairs. Thus details of
NAF mappings can be regarded as samples of AC-
TION:TARGET test pairs. In other words, test pairs
taken from any particular NAF are a subset of the to-
tal number of available test pairs. Moreover, since
samples of NAF item type ACTION:TARGET pairs
map onto corresponding ACTION:TARGET curricu-
lum pairs via a coding scheme, the two model halves
are intimately linked. Viewing the entire model invites
questions such as how particular NAF item types may
be distributed across the universe of curriculum-based
learning expectations? Or, how do respective countries,
when sorted along demographic dimensions like socio-
economic status or gender, compare when considering
estimable curriculum-based ACTION:TARGETs? The
final RL&CS model, therefore, may be a suitable and
promising diagnostic device which can be used to pro-
vide more nuanced information than tools which rely
solely on quantitative metrics can possibly provide.

Method: Creating the RL&CS Model

Niss and Hgjgaard’s (2011) mathematics domains for
the first eight years of formal schooling served as a
foundation. The final RL&CS model was then gen-
erated in two steps: (1) development of a final Refer-
ence List; and (2) development of a coding scheme to
map NAFs. Each is briefly described. The completed
RL&CS coding scheme protocol was then used to test
model integrity against a set of new English-language
NAFs.
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Reference List

With Niss and Hgjgaard’s (2011) model as a basis,
the Reference List was produced in reductive phases:
(1) Reference List data organized by language root (i.e.,
English, French, Spanish) and year (i.e., 1 to 8); (2)
Reference List data organized by language root and
content domain (e.g., Number Knowledge, Geometry);
and (3) Reference List organized across language roots
and content domains. Phases 1 and 2, when completed,
served as data for the development of phases 2 and 3
respectively.

Phase 1: Curriculum data input by language root
and year. English-, French- and Spanish-language
curriculum documents were transcribed into a com-
mon framework and organized by year (years 1 to
8). English-language curricula included documents
from Canada (Ontario), US Common Core Standards,
Ghana, United Kingdom and Barbados. French-
language curricula included documents from Canada
(Quebec) and Democratic Republic of Congo and
Spanish-language curricula included documents from
Chile, Argentina and Guatemala.

A five-level framework: DOMAIN, SUB-
DOMAIN, CONSTRUCT, SUB-CONSTRUCT,
ACTION:TARGET was selected from theory and
various curricula to organize learning expectations.
Content DOMAINs are the broadest structural com-
ponent (e.g., Geometry, Algebra) and there was
little disagreement about domain-level topics across
curriculum documents. SUB-DOMAINs represent
broad content structures that exist within DOMAINS.
CONSTRUCTSs and SUB-CONSTRUCTSs, meanwhile,
represent the broadest mathematical content structures
that exist within SUB-DOMAINs and CONSTRUCTs
respectively. As a general rule, more detailed levels
of the final framework were associated with more
latitude in jurisdictional interpretation and the greatest
differences.

Few national curriculum documents were explicitly
designed to fit the five-level framework as described.
Although there was broad agreement about domains, it
was sometimes necessary to change different, ambigu-
ous or very broad curricular expressions to fit a structure
that was different than was originally intended. Some
curriculum documents place ratio and proportion un-
der DOMAIN:Measurement, for example, and not un-
der DOMAIN:Algebra. Domain affiliation in this case

does not alter the nature or details associated with AC-
TION:TARGET pairs so its reorganization to fit the fi-
nal framework was regarded as a pragmatic detail with
little consequence. It was also sometimes necessary
to include learning expectations that, when translated
verbatim, represent amalgamations of various compo-
nents in the five-level framework. Since details of
ACTION:TARGET pairs were preserved, these situa-
tions were also regarded to have little pragmatic conse-
quence. So the purpose of the first phase was primarily
(1) to organize details of various learning expectations
onto a common, if arbitrary, organizational framework;
(2) to identify potential translation problems from cur-
riculum to the Reference List; and (3) establish proto-
cols to address emerging problems.

Phase 2: Curriculum data input by language root
and domain. Using a constant comparison approach,
the three Reference Lists by language root and year
from Phase 1 were adapted to reflect language root
by content domains (Glaser, 1965). This adaptation
shifts focus away from a year-by-year depiction of de-
velopment typical of school organization to emphasize
how learning expectations evolve within content do-
mains. As before, DOMAIN to CONSTRUCT lev-
els remained relatively stable (i.e., there were few in-
stances where agreement was impossible); more vari-
ability was evident among SUB-CONSTRUCTS and
below. ACTION:TARGET pairs, meanwhile, were ar-
ranged roughly in developmental sequence (e.g., skip-
counting by 2’s precedes skip-counting by 3’s, 4’s and
5’s) in their respective SUB-CONSTRUCTs.

Three reorganized frameworks, each representing a
different language root, emerged. It was sometimes
necessary to interpret differences within respective
language—domain frameworks to preserve national cur-
riculum expressions. Spanish language documents, for
example, sometimes integrated mathematical process
ideas into specific domain structures of the framework.
English-language frameworks, meanwhile, tended to
keep process and content and skills descriptions quite
separate.

Phase 3: Reference List data input across lan-
guage roots and domains. The last stage involved
condensing Reference Lists developed in stage 2 to a
single representative list using the same constant com-
parison method (Glaser, 1965). As before, naming con-
ventions for DOMAINS to SUB-CONSTRUCTS were
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normalized to fit a common framework. And, as be-
fore, the scope of SUB-CONSTRUCTS increased to
accommodate differences in language-based curriculum
expressions. ACTION:TARGET pairs were modified
where possible to represent the same or very similar
learning expectations between Reference Lists devel-
oped in stage 2. Unique ACTION:TARGET pairs en-
countered in respective language-root documents were
preserved in the final framework.

The final model, showing only DOMAIN-Ilevel cor-
respondences, is illustrated in Figure 2. The Niss and
Hgjgaard (2011) cognitive model includes nine distinct
DOMAINS for mathematics whereas the curriculum-
based Reference List includes only six. Agreement
between models is accomplished by equating similar
domains. Niss and Hgjgaard’s Number Domains and
Arithmetic are subsumed under the more general cur-
riculum domain designation Number Knowledge. Sim-
ilarly, Niss and Hgjgaard’s Probability and Statistics,
and Algebra and Functions are equated with Reference
List designations Statistics and Probability and Alge-
bra respectively. These differences arise from disagree-
ment about how the structure of mathematics should be
organized and interpreted. While Niss and Hgjgaard
argued that domains should follow the organization of
structures in mathematics as a discipline (e.g., algebra,
geometry), curriculum documents are often organized
around functional groupings (e.g., measurement, space
and shape) that are more closely associated with the
complexities of teaching and learning.

An illustration of organizational disagreement is ev-
ident when we consider the DOMAINs which stand
alone in the final model (Figure 2). Measurement ap-
pears without a corresponding cognitive domain and
Discrete Mathematics stands alone without a corre-
sponding curriculum domain. Measurement is regarded
by Niss and Hgjgaard as an example of a functional do-
main and has no designation in the structure of mathe-
matics. This does not mean that measurement tasks are
not important to teach but rather than they are not part of
the formal structure of the discipline. Similarly, discrete
mathematics is rarely taught in Elementary school as a
coherent topic under that name. Despite this, students
still engage in discrete mathematics activities when they
plot linear functions or collect and analyze survey data
under other domains.

The kinds of disagreements about the Reference List

Math Ability

Number Knowledge

Measurement

Statistics and
Probability

Reference List

Geometry

Cognition Model
Coding Scheme

NN
National Assessment Framework (NAF)

Algebra

Discrete Mathematics

Figure 2. The Reference List & Coding Scheme
(RL&CS) Model for Mathematics (years 1 through 8)

illustrate how unimportant its final structure was in
terms of characterizing, say, an international curricular
view. From the standpoint of the final product, it was far
more important that its organizational form provided a
clear way to logically sort and categorize details of AC-
TION:TARGET pairs.

Coding scheme to map national assessment frame-
works

The coding scheme was created using the same DO-
MAIN to SUB-CONSTRUCT framework developed
for the Reference List. It was intended to guide a
naive coder to locate specific NAF item-types onto the
curriculum side of the model. A coder locates the
appropriate DOMAIN to SUB-CONSTRUCT branch
and compares the NAF item type to a list of AC-
TION:TARGET curriculum pairs. This positions the
item type in the RL&CS model. If an item type had
no match among ACTION:TARGET curriculum pairs,
coders were asked to make note so that the Reference
List could be subsequently modified. If an item type
was ambiguously associated with more than one Ref-
erence List structure (e.g., associated with adding and
subtracting natural numbers and, say, linear measures)
coders were encouraged to duplicate the item type de-
scription to appear in all appropriate Reference List
structures.

A total of 79 English-language mathematics NAFs
were successfully mapped onto the Reference List by
independent coders (Siakalli & Vaverek, 2017). Al-
though many of the challenges noted above were iden-
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tified there was general agreement that details in the
RL&CS model contributed a great deal to its usefulness
as an organizational tool. Indeed, coders encountered
no NAFs that defied attempts to map.

Discussion

A critical appraisal of the methodology used to de-
rive the RL&CS model is briefly sketched above. It
was mainly concerned with a piece-wise discussion of
model components (e.g., cognitive theory, curriculum),
however, and not with robustness or utility of the model
as a cohesive thing. This section addresses the model
as-a-whole, opening with discussion about robustness
of the final framework, followed by brief descriptions
about how the model can be used, some implications
and foreseeable challenges.

Robustness of the Model

The final framework was developed using qualitative
research techniques primarily to ground results both in
theory and in practice. A theoretical basis arguably
stabilizes the final framework by providing a warrant
for particular domains generally believed to be impor-
tant mathematical components during the first 8 years
of formal schooling (OECD, 2013; Schoenfeld, 2007;
Niss & Hgjgaard, 2011). This anchors final model
domains to existing literature. It also means that ad-
vances in our understanding of mathematics cognition
can be easily incorporated to adjust things. Various cur-
riculum expressions, by comparison, provide a mod-
icum of flexibility. For particular curriculum expres-
sions are informed by teaching and learning factors as
much as they are by structural components of mathe-
matics as a discipline. Inter-jurisdictional differences
in perspectives, task details and sequencing introduces
uncertainty which manifests as a churning effect mostly
at the framework extremes. So the Reference List side
of the RL&CS model reflects the structured formalism
of mathematics as a discipline at the same time that it
describes details of the relative informalism of mathe-
matics as it is practised in schools. Both are necessary
in the pursuit of UNESCO’s Education 2030 goals.

As mentioned, composition of the DOMAIN to
SUB-CONSTRUCT framework is intended to be an or-
ganizing tool; one that sorts various learning expecta-
tions turned ACTION:TARGET pairs that are encoun-

tered in curriculum into a series of logical categories.
But as this framework is itself derived from specific
curriculum documents, any logical categories it de-
fines are, in a sense, arbitrary. That is to say a differ-
ent collection of curriculum documents may have re-
sulted in derivation of a different framework. So the
robustness of the RL side of the model rests princi-
pally on the trustworthiness of the final population of
ACTION:TARGET pairs. Trouble is, learning expecta-
tions expressed as ACTION:TARGET pairs vary by ju-
risdiction so model robustness cannot rely on a finite set
of "true" pairs because no such set exists. Instead, we
are left with a population of ACTION:TARGET pairs
whose trustworthiness amounts to their pragmatic value
(Creswell & Poth, 2017). For it is schools that define
mathematics for teachers and students through every-
day interactions with mathematical tasks. Robustness
of ACTION:TARGET pairs in the final model, there-
fore, amounts to their endorsement by international
consensus; because we collectively agree that they are
meaningful.

The assessment side of the RL&CS model is also
based on the trustworthiness of the final set of AC-
TION:TARGET curriculum pairs. The coding scheme
establishes a bridge between cognitive—curriculum and
assessment sides of the model by linking curriculum-
based ACTION:TARGET pairs to assessment-based
ACTION:TARGET pairs. The assessment side of the
model, therefore, amounts to a translation of informa-
tion from one form to another. Assessment frame-
works and, arguably most tests, are limited by learn-
ing expectations defined in associated curriculum doc-
uments. So what is taught, the limits of what is
learned, and the scope of what is tested are circum-
scribed by the population of curriculum-based AC-
TION:TARGET pairs. And this is associated with
how successfully assessment-based ACTION: TARGET
pairs can be mapped. Robustness of the final model,
then, depends on the comprehensiveness of the final set
of ACTION:TARGET indicators and the robustness of
the coding scheme and not on the final structural frame-
work.

Practical Utility of the RL&CS Model

What about the practicality of this model? Ultility
of the RL&CS model is briefly discussed here in terms
of opportunities and challenges. These topics are not
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intended to be exhaustive but, rather, indicative of an
evolving conversation as the framework is more widely
available and different curricular expressions are ap-
plied.

Implications of the Framework

Two facets of the final model suggests opportuni-
ties to assume theory—curriculum, assessment or com-
bined theory—curriculum and assessment perspectives.
These views are complimentary and may facilitate ju-
risdictional or inter-jurisdictional curriculum content
and sequencing comparisons, critical analyses of inter-
jurisdictional testing intentions, item-level analyses,
comparisons of various test results or any combination
of these.

Modelling theory. There is some tension between
theoretical and practical accounts about how students
learn and do mathematics (e.g., Cobb, 1988). It may be,
for example, that discrete mathematics does not appear
in most curriculum documents because it is too abstract
a notion for school children or that discrete mathemat-
ics as a stand-alone topic does not work in practice. A
similar argument, though this time in reverse, can be
made of measurement. Up to now, defined topics which
exist in mathematics as a discipline have been largely
isolated from topics which exist in curriculum. Dif-
ferences between interpretative brands, therefore, may
have more to do with the ways they are used. And
differences in use is not limited to content domains.
Cognitive theories often portray mathematical process
elements in a discussion about how people mathema-
tize. Curriculum documents, by contrast, present math-
ematics process elements variously as global competen-
cies affecting all domains or as competencies specifi-
cally associated with particular task types. Reasons for
these differences have not been well described or inves-
tigated. Yet a better understanding about these matters
would undoubtedly inform both theory and practice.

The RL&CS framework, therefore, represents a way
to organize theory and curriculum toward a better un-
derstanding of their relation. It is not so much that the-
ory and curriculum should agree—constructivist views
of learning differ from structural views of mathematics—
but that their juxtaposition offers interesting fodder
about the nature of the subject matter and how this is
associated with practical challenges involved in learn-
ing and doing mathematics.

Modelling curriculum. The RL&CS framework
can be used to study jurisdictional curriculum ex-
pressions in any or all of the identified mathemat-
ics domains. Since the cognitive—curriculum half
of the model represents a wide selection of AC-
TION:TARGET pairs, it can be used to investigate dis-
tributional behaviour of various jurisdictional curricu-
lum expressions. These can then be compared to NAF
item-type distributions and even test outcomes.

It may be, for example, that certain jurisdictions
share curriculum expectations but differ in NAF item-
type distributions and test outcomes. Or the relative
density of ACTION:TARGET pairs by domain between
different curriculum expressions may provide important
information concerning curriculum reform.

Modelling NAFs. In analogous fashion to cur-
riculum, assessment frameworks (national or interna-
tional) could also be modelled and compared using
the assessment side of the RL&CS framework. Inter-
jurisdictional variation in testing intentions may pro-
vide valuable information particularly when coupled
with curriculum or test outcomes data.

An investigation of distributional overlap between
NAF item types and curriculum or the overlap between
NAF item types and actual test item-types may inform
reform efforts in test design by jurisdiction. Indeed,
how closely particular NAF item-types map onto asso-
ciated curriculum or test design may be indicative of
relative educational success.

Modelling item-level details and test outcomes.
Just as NAFs can map onto the RL&CS framework us-
ing information about item types, if enough is known
about actual item characteristics it is also possible
to map details of administered tests and link these
to analyses of student outcomes. For example, the
Australian Council for Educational Research (ACER),
in partnership with UIS and UNESCO, is developing
a catalogue of items to measure learning outcomes
(http://www.acer.org). This entails the compilation of
achievement indicators used for elementary and sec-
ondary students from among 20 or so countries. Stu-
dent responses will be analyzed and interpretation and
reporting parsed by jurisdiction.

But ACER’s set of mathematics items could be trans-
lated to ACTION:TARGET pairs and used to extend
the RL&CS framework. Hence cognitive—curriculum
learning expectations (i.e., feaching and learning in-
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tentions) and details of NAFs (i.e., item-types intended
for testing) could be extended to include details about
administered tests (i.e, administered items) and item-
level student responses (i.e., fest results). Translat-
ing mathematics items into ACTION:TARGET indi-
cators and linking these to students’ responses intro-
duces new opportunities. ACER could calibrate item
selection on distributional characteristics of items when
they are mapped onto the model. It would be possible,
for example, to quantitatively describe how detailed at-
tributes of items are related to the DOMAIN to SUB-
CONSTRUCT components of the model framework.
Is there sufficient content and skills coverage? (what
counts as sufficient content and skills coverage?). It
would also be possible to parse learning outcomes by
item types; determining which, if any, item types tend
to contribute more to outcomes of the global reporting
scale.

An extended RL&CS framework allows for criti-
cal analysis of item-level test response data and how
they relate to detailed item information and inter-
jurisdictional learning expectations. This is important
because there are substantial rifts between content and
skills addressed by assessment instruments (particularly
large-scale tests) and curricula (Pellegrino et al., 2001;
Schoenfeld, 2007). Extending the model bridges this
divide by introducing a single comparative platform.
Details of item-level content and skills used to construct
measures and item-level student outcomes gives infor-
mation about test composition and relevance but also
opens interesting possibilities for secondary analyses.
It would be possible, for example, to conduct item-level
latent trait analyses of student responses. Using this ap-
proach, we could model differences among students’,
say, geometry responses against factors such as gender
or residence type (e.g., urban vs. rural).

Using the ACER reporting scale to extend the
RL&CS model could be an exemplar for a more am-
bitious extension. For as long as item-level details are
accompanied by student responses, any assessment in-
strument can be used to extend the framework. For
example, governments who wish to learn more from
their own national tests could extend the model to in-
clude proprietorial item-level information and use these
to conduct a series of secondary analyses (e.g., student
responses « item format + SUB-DOMAIN item cov-
erage). International agencies could extend the model

in an analogous fashion by analyzing publicly available
data. ACER’s continued involvement in the design and
implementation of the model extension allows for con-
tinuing development of a suite of tools that agencies and
governments could deploy.

Utility of the Framework

The RL&CS framework integrity rests on the prag-
matic value of the final set of ACTION:TARGET
curriculum pairs. In other words, detailed AC-
TION:TARGET indicators are trustworthy only insofar
as they continue to have value to stakeholders. Utility
of the framework, therefore, is inexorably tied to its use.
Three possible stakeholder groups are discussed.

National agencies and governments. National ed-
ucational authorities can use the final framework to in-
vestigate effectiveness of curriculum-based learning ex-
pectations, testing intentions and, where appropriate,
test results against other jurisdictional learning expec-
tations, testing intentions and test results. The coding
scheme is relatively easily learned and applied to juris-
dictions with differences in curriculum, NAFs and test
outcomes. Making the final framework available to a
variety of national agencies and governments, however,
presents a significant accessibility problem. For, on the
one hand, integrity of the framework needs to be safe-
guarded while, on the other hand, it should be readily
available.

An interactive web-based interface, if carefully
maintained, could serve both integrity and accessibility
functions. It could act as a source of information about
the RL&CS model, provide information about, and op-
portunities to practice using the coding scheme, serve
as a repository for inter/national results, and serve anal-
ysis templates to agencies and governments wishing to
examine their own data. Moreover, it could function
as a simple database, a repository of data to be down-
loaded as well as a simple tool to upload national data.
A web-based interface could be maintained on an on-
going basis ensuring ACTION:TARGET indicator in-
tegrity while, at the same time, providing an accessi-
ble, modifiable and extendable platform. Above all, it
would provide a cost-effective way to encourage inter-
national participation in realizing the SDG-4 goal.

International agencies. As with national authori-
ties, a web-based interactive RL&CS client could also
serve international agencies. In fact, there is no reason
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why the front-end of a web-based interface could not
simultaneously serve both national and international in-
terests. Functional separation becomes imperative only
when it is important to differentiate data derived from
countries or agencies not wishing to share data from
those that do. In such cases, separation would likely
be guided by some kind of ethical protocol to manage
informed consent requests.

Web-based data gathering, analysis and reporting
protocols established for international and national
users will define how the framework is used now and
in future. Unlike paper documents, a web platform can
be continuously revised as needs change. But simi-
lar to paper documents, a web platform—because it re-
quires users to interact in particular ways—defines how
the model is used. So while it would be possible to
standardize model elements to ensure that, say, inter-
jurisdictional comparisons are made more meaningful,
standardization influences utility and, ultimately, in-
tegrity of the model.

Challenges

Just as trustworthiness of the final framework is tied
to its use, threats to integrity are arguably tied to prag-
matic issues of model design and use. For no single set
of curriculum-based ACTION:TARGET indicators can
objectively capture the diversity of worldwide teaching,
learning and testing intentions. And this remains true
regardless of whether or not the model is extended to
include details of items administered to students or ex-
tended to include actual test results. So threats to in-
tegrity constantly change and, because they link prag-
matics of data use with educational practice, evolve as
new theoretical and jurisdictional interpretations about
mathematics emerge.

RL&CS framework integrity is contingent on two
main model components: Trustworthiness of AC-
TION:TARGET indicators; and integrity of the coding
scheme linking the two halves of the final framework.

Trustworthiness of ACTION:TARGET indica-
tors. Trustworthiness hinges on the extent to which
ACTION:TARGET pairs adequately represent the
scope and depth of international learning expectations.
If this set is representative it can be treated as an indi-
cator universe for the purposes of downstream model
analysis and reporting. And we can use results to in-
form educational decisions with the assurance that they

reflect a current understanding about mathematics cur-
riculum. But the opposite is more likely the case.
ACTION:TARGET indicators will not reflect adequate
scope and depth in all respects. So it will be nec-
essary to determine the point at which they are suffi-
ciently adequate. The question, therefore, comes down
to how we determine and maintain the final set of AC-
TION:TARGET indicators to be reasonably represen-
tative (Yarbrough, Shula, Hopson & Caruthers, 2010).

Complicating matters, mathematics curriculum doc-
uments continuously change so we can predict with cer-
tainty that representativeness of any final set of AC-
TION:TARGET indicators will drift over time. Mitigat-
ing this threat requires on-going work to refine and re-
define such things as policies, decision-making, stake-
holder roles, documents, curriculum-based descriptive
language and content/skills details and test information.
Stakeholders, both old and new, will provide valuable
input about what is changing in mathematics education.
New curriculum documents can be periodically mapped
to ensure the model remains flexible enough to capture
a broad diversity of jurisdictional expressions; previ-
ously mapped curriculum documents can be re-mapped.
Changes in our understanding about assessment, test
design, administration and reporting influence the se-
lection of testable item types. Mitigating factors such
as these can be included in a comprehensive, and on-
going, program evaluation approach (Yarbrough et al.,
2010).

Arguably the greater the number of curriculum doc-
uments we map the more resilient and stable the model
will become. As new information is mapped onto
the final framework, misfitting ACTION:TARGET in-
dicators become more apparent resulting in possible
changes in structural components of the model frame-
work itself. That said, however, pragmatic decisions
have to be made as to how many (both old and new)
curriculum documents are reasonable to include and
with what periodicity (e.g., annually, semi-annually)
they should be included. Outcomes of such pragmatic
decisions define a reasonable accommodation threshold
that, in turn, also influences model integrity.

Integrity of the coding scheme. Model integrity
also depends on the effectiveness of the coding scheme.
This is where structural components (i.e., DOMAIN
... SUB-CONSTRUCT) of the final framework, despite
being essentially arbitrary, become important. Coders
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rely on the framework structure to map assessment
ACTION:TARGET pairs from various NAFs onto the
model. If this structure is ambiguous or incomplete it
is more likely to result in coding disagreements and er-
rors. So fidelity of structural components turns out to
have pragmatic relevance to model design.

Mitigating coding difficulties requires on-going sup-
port. Revised coding protocols resulting from changes
to details of ACTION:TARGET pairs, new coders and
new NAFs all conspire to challenge integrity. Simi-
lar to difficulty with ensuring reasonable representation
of ACTION:TARGET curriculum outcomes, increasing
the number of NAFs mapped to the model, and track-
ing anomalies and omissions, amounts to an integrity
check. Provided the final model is a reasonable repre-
sentation of international mathematics curriculum ex-
pressions, mapping should proceed with relatively few
anomalies or omissions.

Conclusion

The methodology used to create a Reference List &
Coding Scheme framework described here is a step to-
ward establishing a complex interpretative environment
from which to base educational decisions. It is ambi-
tious in the sense that it encompasses learning expec-
tations representative of three language roots yet not
ambitious enough because it only encompasses three
language roots. Likewise, it is flexible and extensi-
ble enough to reflect intended learning expectations, in-
tended item types for assessment, details of adminis-
tered items, and student response data. Yet it is not flex-
ible or extensible enough to adequately capture more
complexity in students’ opportunities to learn. More-
over, as framework utility is for all intents and purposes
a pragmatic property that is subject to drift, a great deal
remains to be learned about effectively using it as we
move forward. For our understanding about how stu-
dents learn and do mathematics is still rudimentary so
while this framework captures something of complexity
it does not capture nearly enough. Clearly more work
is needed.
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