

Retrospective Study: Lusaka Water Supply

- Iolanda WTP supplies 40% of Lusaka
- 24 MGD
- Hydropower Dependent
- 12-18 hrs of load shedding (2014-16)
- Zambia is drought prone

Decision Scaling Framework

- 1. Participatory scoping and Performance Metrics
- 2. Model the System & Identify the Vulnerabilities to Performance through Stress-Testing
- 3. Model Actions to Reduce Vulnerabilities to Performance
- 4. Consider Action Effectiveness, Feasibility and Cost
- 5. Design Adaptive Plan
- 6. Implement
- 7. Monitor

Case Study Background

1. Decision Context

Problem statements linked to measures of vulnerability, objectives and sources of

deep uncertainty.

1. Decision Context

The plants current performance is unacceptable. There is need to define a baseline level of investment (e.g. the investment one ought to make regardless of climate change)

2. Describe the System

2. Describe the System

2. Vulnerability Analysis: Power

Create a set of climate scenarios or stressor conditions and test performance under those scenarios. (In this case 24 scenarios based on 12 GCMs and 2 emission scenarios. However, these can be independent of any/all GCMs).

2. Vulnerability Analysis: Power

Exit Point: Water level at Intake.

Likelihood

 Any reduction in stream flow (predicted by most GCMs) will violate performance thresholds under baseline investment conditions

Consequence

Increase childhood
mortality, stunting, various
waterborne disease, lost
wages productivity and
income.

Climate Risk Matrix

Climate Risk

High climate risk should favor robust strategies

Analytical Uncertainty

- The analysis is based on poor quality data, low resolution models, and there is relatively little convergence in the GCM predictions.
- This favors flexibility (adaptive solutions).

Level of Concern Matrix

Generators for Pumps

Generators for Pumps

New Power Agreement

Generators for Pumps

New Power Agreement

Larger Transfer Tanks

4. Formulate Climate Robust Actions

Climate Scenario Bins

5. Develop Final Strategy (and 6. Implement)

Cost Effectiveness

 The lowest cost plan robust to each bin is retained

Incremental Cost Analysis

• A plan is selected by comparing the incremental cost to the qualitatively assessed incremental probability that the benefit is realized

Incremental Cost Analysis

- Incremental Cost of Design Robust Design +

Key Points

- Not Modeling Intensive
- Time Savings
- Inexpensive
- Expanding Our Effort

