AMBASSADORS OF SUSTAINABILITY

CLIMATE CHANGE AND PEACE

Assoc. Prof. Ts. Dr Aeslina Abdul Kadir

Faculty of Civil Engineering and Built Environment UNIVERSITI TUN HUSSEIN ONN MALAYSIA aeslina@uthm.edu.my

MTUN UNIVERSITIES:

WHERE I COME FROM

- UNIVERSITI TEKNIKAL MALAYSIA MELAKA (UTEM)
- UNIVERSITI MALAYSIA PERLIS (UNIMAP)
- UNIVERSITI TUN HUSSEIN ONN MALAYSIA (UTHM)
- UNIVERSITI MALAYSIA PAHANG (UMP)

WHERE I COME FROM

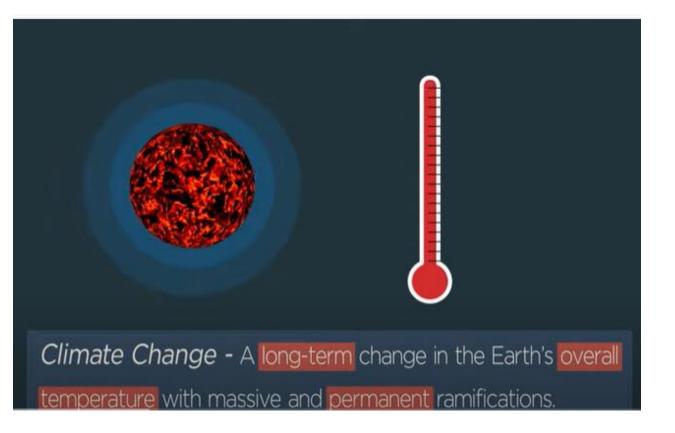
Faculty of Civil Engineering and Built Environment

 $\mathbf{01}$ **INTRODUCTION GLOBAL EFFORTS IN ADDRESSING AND** 02 **MITIGATING CLIMATE CHANGE** 03 Topics On Climate Change And Peace 04 **MASTERPLAN** 05 06 07 **08 MYRESEARCH**

MALAYSIA EFFORTS IN ADDRESSING AND MITIGATING CLIMATE CHANGE

NATIONAL LOW CARBON CITIES

MALAYSIA CITIES COMMITMENT


UNIVERSITIES COMMITMENT

INDIVIDUAL COMMITMENT

INTRODUCTION

What is climate change?

CLIMATE CHANGE

Climate change is a long-term shift in global or regional climate patterns, in particular refers specifically to the rise in global temperatures from the mid-20th century to present and attributed largely to the increased levels of atmospheric carbon dioxide produced by the use of fossil fuels

Causes of climate change?

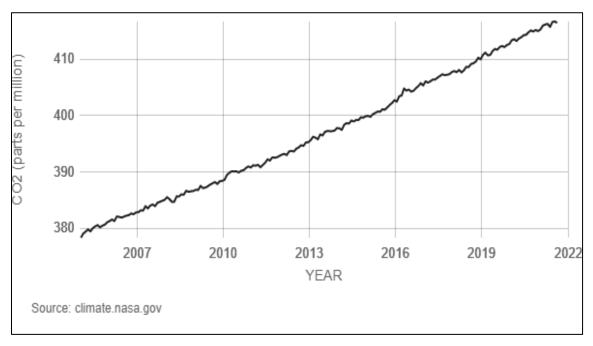
Rapid industrialization

Consumer practices

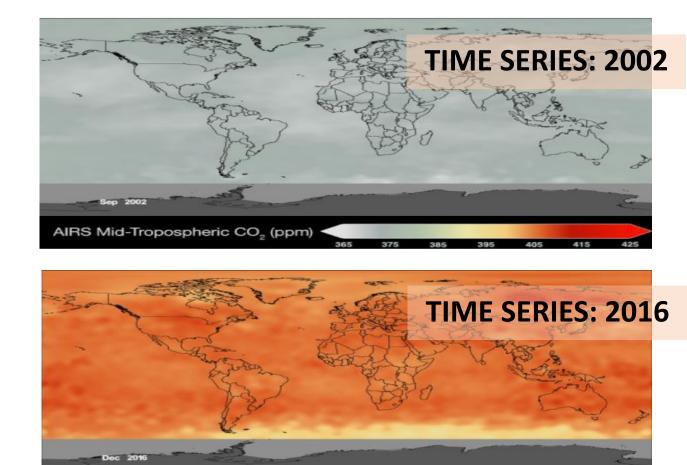
Livestock

Deforestation

Pollution


Climate indicators

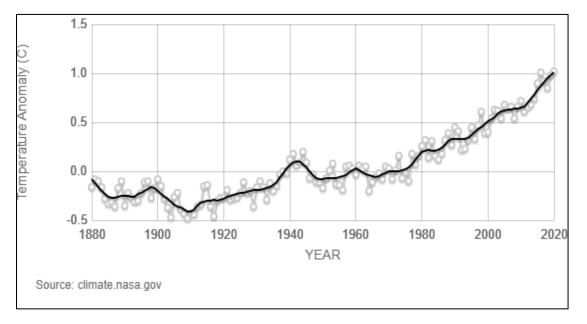
Carbon Dioxide (CO₂) levels	Ice Sheets	
Global Temperature	Sea Level	
Arctic Sea Ice Minimum	Ocean Heat Content	

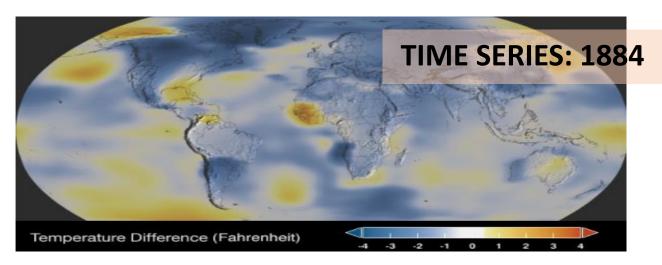

-Carbon Dioxide (CO₂) levels-

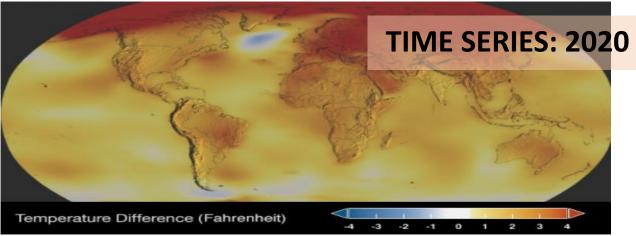
Latest measurement: August 2021 416 ppm

 Human activities have profoundly increased CO₂ (a heat-trapping gas) levels in Earth's atmosphere.

DIRECT MEASUREMENTS: 2005-PRESENT

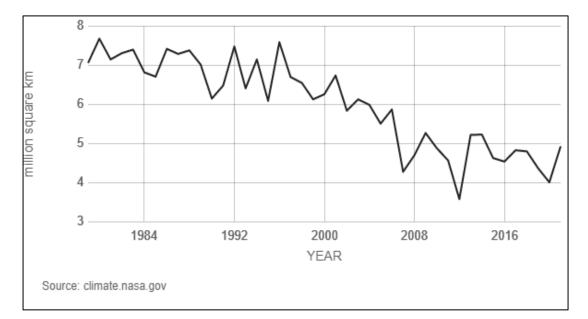

Global distribution and variation of the concentration of mid-tropospheric carbon dioxide in parts per million (ppm)


AIRS Mid-Tropospheric CO₂ (ppm)


-Global Temperature-

LATEST ANNUAL AVERAGE ANOMALY: 2020

 Earth's surface continues to significantly warm, with recent global temperatures being the hottest in the past 2,000-plus years.


GLOBAL LAND-OCEAN TEMPERATURE INDEX

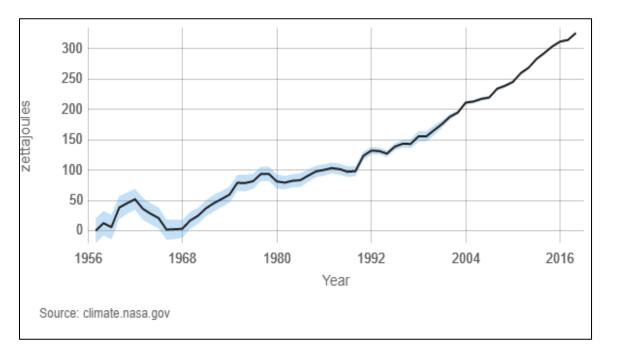
Change in global surface temperature

-Arctic Sea Ice Minimum-

RATE OF CHANGE

 Arctic sea ice extent has declined significantly in all months since 1979, with Septembers showing the largest declines.

AVERAGE SEPTEMBER MINIMUM EXTENT



Annual Arctic sea ice minimum since 1979, based on satellite observations

-Ocean Heat Content-

LATEST MEASUREMENT: December 2020 326 (±2) zettajoules

90% of global warming is occurring in the ocean, with the last decade and the year 2020 being the hottest.

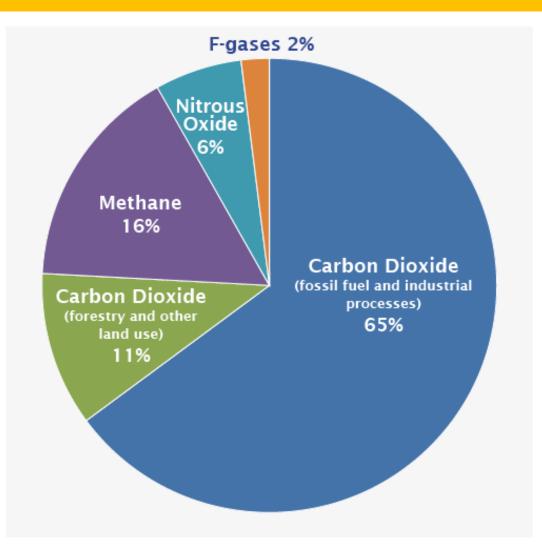
OCEAN HEAT CONTENT CHANGES SINCE 1955 (NOAA)

The effects of ocean warming include sea level rise due to thermal expansion, coral bleaching, accelerated melting of Earth's major ice sheets, intensified hurricanes, and changes in ocean health and biochemistry.

Bleached coral off Islamorada, Florida

Composition of global greenhouses gas (GHG)

Carbon dioxide (CO₂): Fossil fuel use is the primary source of CO_2 . CO_2 can also be emitted from direct human-induced impacts on forestry and other land use, such as through deforestation, land clearing for agriculture, and degradation of soils. Likewise, land can also remove CO_2 from the atmosphere through reforestation, improvement of soils, and other activities.


Methane (CH₄): Agricultural activities, waste management, energy use, and biomass burning all contribute to CH₄ emissions.

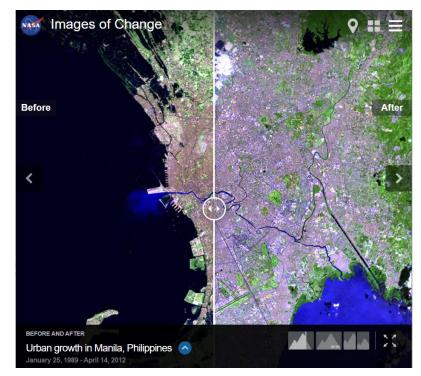
Nitrous oxide (N₂O): Agricultural activities, such as fertilizer use, are the primary source of N₂O emissions. Fossil fuel combustion also generates N₂O

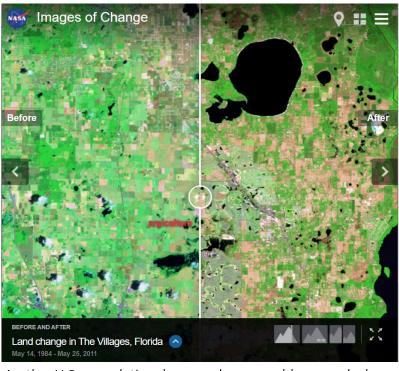
Fluorinated gases (F-gases): Industrial processes, refrigeration, and the use of a variety of consumer products contribute to emissions of F-gases, which include hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

SOURCE: IPCC (2014), https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data

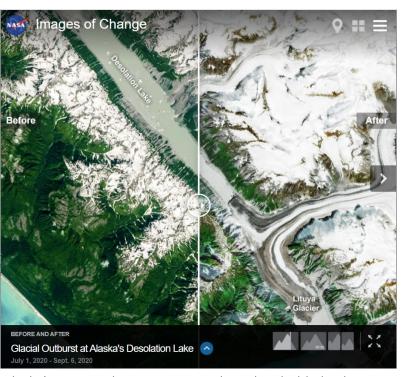
Composition of global greenhouses gas (GHG)

SOURCE: IPCC (2014), https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data

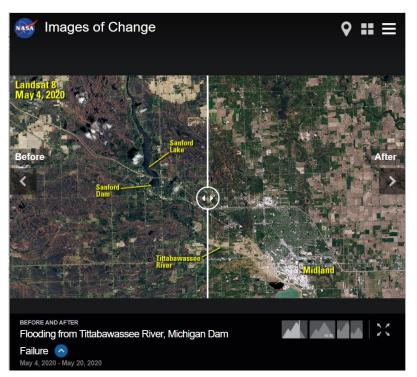

Effects of climate change?


Effects of climate change on cities

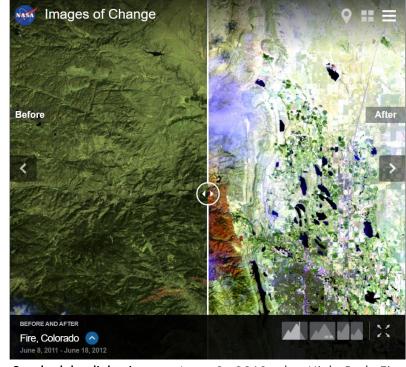
Aimogasta is a regional center of olive production, trade and tourism. Expansion of the agricultural frontier in this region has led to increased wind and water erosion, salinization, and loss of biodiversity. In the 2008 image, cultivated fields that did not exist in 1975 are visible around Aimogasta, Villa Mazán and El Pajonal (seen as green areas with regular geometric patterns).



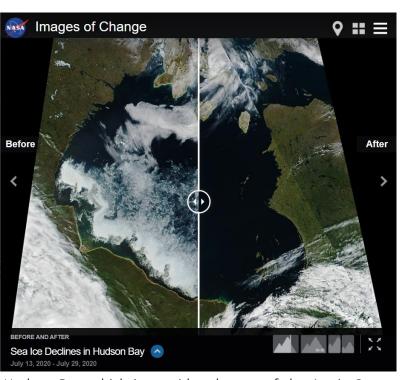
The Philippine capital of Manila is the most densely populated city in the world, with more than 1.6 million inhabitants in 14.8 square miles (38.5 square kilometers). The greater metro area covers 246 square miles (638 square kilometers) and hosts a population of over 11 million. These satellite images illustrate how much the **city has expanded** in little more than two decades, **bringing significant infrastructure and environmental problems**. The Pasig River, which cuts through the urban area, is one of the most **polluted rivers in the world**.



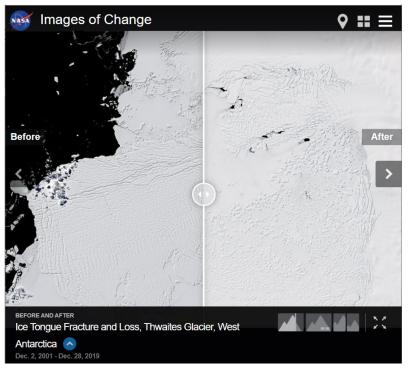
As the U.S. population has aged, more older people have been moving from northern states to southern communities. Sumpter County in central Florida grew 75 percent since 2000, largely due to expansion of The Villages, a masterplanned retirement community with a strong emphasis on golf. Started as a mobile home park in the early 1980s, The Villages was the fastest growing micro-population area in the United States by 2008. These images illustrate the changes that have accompanied this growth.


Effects of climate change on extreme events

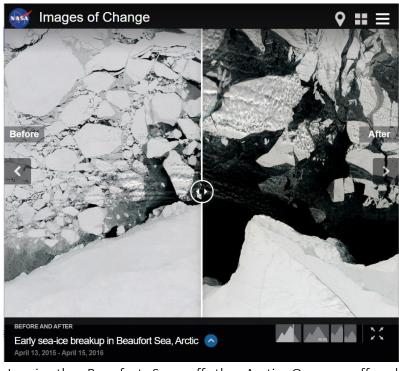
Alaska's Lituya Glacier acts as a dam that holds back a vast pool of glacial meltwater informally known as Desolation Lake. In August 2020, part of **the ice dam gave way** and an estimated 132 billion gallons (500 billion liters) of water **quickly drained out of the lake** in an event known as a **glacial lake outburst flood**. The water evidently flowed under Lituya Glacier, then over the gravel delta at the glacier's southern end and into Lituya Bay. The lake's water level reportedly dropped at least 200 feet (60 meters) in the event, which shows up in the September image as a narrowing of its width.



Sanford Dam failed on May 19, 2020, flooding the area downstream. The image on the right was taken the following day, when the Tittabawassee River peaked some 10 feet above flood stage at Midland, Michigan. Muddy floodwater is visible spilling onto land near the river. The image on the left shows the region before the flooding, when the dam still held back the waters of Sanford Lake.

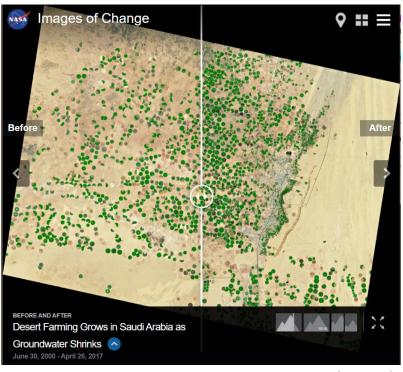


Sparked by lightning on June 9, 2012, the High Park Fire burned more than 87,000 acres near and in Roosevelt National Forest, just west of Fort Collins, Colorado. One person was killed and at least 259 homes were destroyed. **High temperatures and strong winds hampered efforts to extinguish the blaze**, which was the second largest in Colorado history.


Effects of climate change on ice

Hudson Bay, which is considered a sea of the Arctic Ocean despite being surrounded by land, freezes over completely in winter and thaws in summer. These images show the **decrease in ice** over the course of 16 days in July 2020. During the thaw, polar bears travel over the slowly melting sea ice to hunt for ringed seals and other prey. When the ice becomes too scarce, the bears fast and wait for it to return. **The area has lost about a third of the polar bear population** since the 1980s, dropping the count from about 1200 to 800, apparently because declining summer sea ice has given them less opportunity to feed.

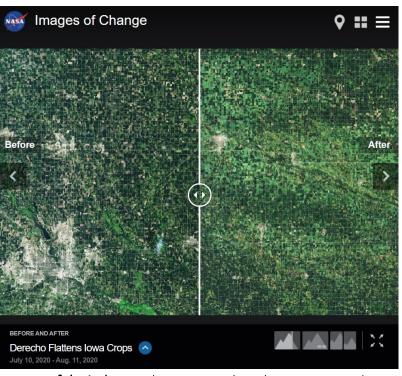
A thick mass of floating ice, called an "ice tongue," stretches from Thwaites Glacier, which sits on solid ground in West Antarctica, into the Amundsen Sea. These images show the **fracturing and loss of much of the ice tongue** from 2001 to 2019. **Ice moving from land to sea contributes to sea-level rise**, and the amount of ice flowing into the sea from Thwaites has doubled in the span of three decades.



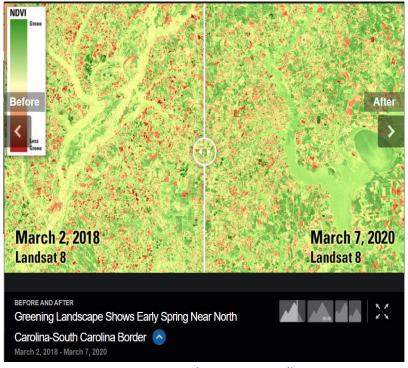
Ice in the Beaufort Sea, off the Arctic Ocean, suffered significant fracturing and breakup by mid-April in 2016, considerably earlier than the late-May period when this usually happens. NASA ice specialists attribute the **change to unusually warm air temperatures** during the first months of the year and to strong winds **caused by a stalled high-pressure system over the area**. The thicker, multi-year ice that once covered the region has largely given way to seasonal, first-year ice that is thinner, weaker and more easily broken up by strong winds.

Effects of climate change on human impact

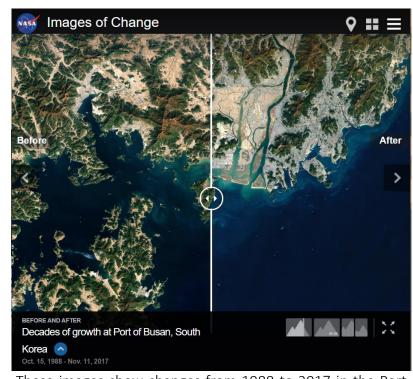
The 2019 image shows an area of Papua (also known as Western New Guinea) where the **forest was cleared** between 2011 and 2016, reportedly to make way **for plantation agriculture**.



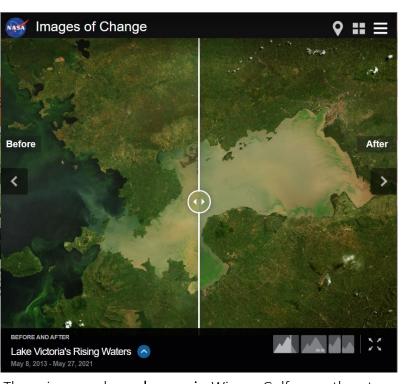
These images show an increase in crops near the Saudi Arabian town of Wadi ad-Dawasir, which are irrigated with a shrinking supply of groundwater. Studies using data from NASA's GRACE satellite system found that the Arabian Peninsula has the most stressed of the world's 37 largest aquifers, especially in this part of the aquifer. According to a UN report, the water table here has dropped some 20 feet (6 meters) per year since the 1980s, prompting fears that the aquifer could be depleted within a few more decades.



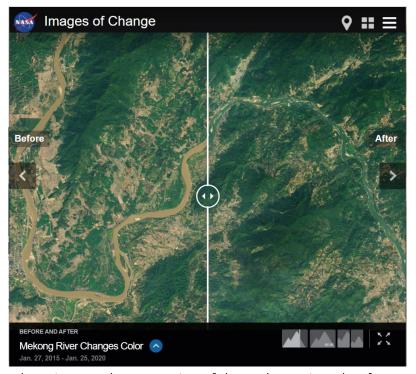
These images illustrate major changes in agricultural practices in the Mexican state of Chihuahua. Increased diversion of water from the Luis L. Leon **Reservoir for agricultural irrigation has affected vegetation patterns** in the northeastern part of Chihuahua and significantly **reduced the amount of water reaching the Rio Grande River**. Farmers use center pivot irrigation systems (marked by red circles) to grow alfalfa and sorghum for dairy farms and cattle feedlots. The **drop in water supplying** the Rio Grande seriously **threatens wildlife habitat and natural vegetation**.


Effects of climate change on land cover

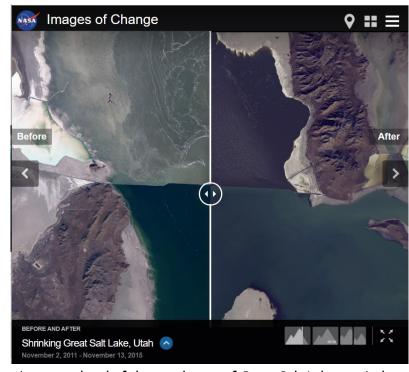
A **powerful windstorm**, known as a derecho, **tore across lowa**, northern Illinois, and northern Indiana on Aug. 10, 2020, with hurricane-force winds of 75 mph (120 kph) or more. Eastern lowa saw gusts of up to 115 mph (185 kph), according to the National Weather Service. These images show **fields of corn and soybeans in that state, before and after the storm**. The lighter greens of the August image indicate **crops that the winds damaged**.



In much of the U.S., **spring began unusually** early in 2020. These images compare an area near the border of North and South Carolina in early March of 2018 and 2020. In the latter year, **the area saw its earliest eruption on record of leaves and flowers**. The two images wouldn't look very different in natural color. But in these false-color images, made from both visible and infrared light, springtime vegetation is highlighted with darker and more widespread shades of green.



These images show changes from 1988 to 2017 in the Port of Busan region at the southeastern tip of the Korean Peninsula, including the addition of Busan New Port near Gadeok Island. The World Shipping Council ranks Busan, which has been a trading hub since at least the 15th century, the world's fifth busiest container port. The images also show that **three barrier islands at the mouth of the Nakdong River have shifted positions and grown slightly larger during this period.** South of the islands, **rows of seaweed farming operations are visible** in the 2017 image.


Effects of climate change on water

These images show changes in Winam Gulf, a northeastern extension of Lake Victoria, Africa's largest lake. Months of intense rain raised the water level to the highest point in the three decades of measurement by satellite, putting lakeside communities at risk of flooding. Many of the green patches within the gulf are vegetation. Suspended sediment (particles of soil or other materials) colors some of the water brown.

These images show a section of the Mekong River that forms a border between Laos (top) and Thailand. Its water is normally fast-flowing and loaded with sediments that give it the muddy brown appearance seen in the 2015 image. But in the 2020 image, the river was unusually shallow and slowmoving, the result of both drought and flow-reducing dams. That enabled sediment to settle to the bottom and promoted the growth of algae, giving the river a blue-green cast.

The water level of the north arm of Great Salt Lake, Utah, has reached a record low of 4,191.6 feet because the smaller snowpack of recent years has reduced the spring runoff that feeds the lake. The south arm's water has dropped below the level where it could cross the breach that separates the arms. Water from the north arm is pumped to evaporation ponds, seen on the right side of these images, from which salt, potassium and other minerals are extracted.

Can we reverse the impacts of climate change?

INTERACTIONS BETWEEN CLIMATE CHANGE, PEOPLE AND NATURE

Climate change drives nature loss

Climate change has direct impacts and can worsen other stressors. Impacts include higher temperatures, worse extreme events and sea-level rise.

CLIMATE CHANGE

Nature-based solutions

Nature-based solutions can contribute to climate

change mitigation, resilience and adaptation with

co-benefits for nature. Examples include

ecosystem-based adaptation, sustainable land

management, and halting natural

ecosystem conversion.

People can protect and restore nature

For example through protected areas,

ecosystem restoration and rewilding.

Non-climate contributions include food, energy, medicines, spiritual and cultural identity and resilience to floods and storms.

Natural systems help regulate the climate

White ice and snow reflect sunlight; oceans absorb heat; oceans and plants draw down CO, from the atmosphere.

Nature loss drives climate change

Land-use conversion of natural grasslands, forests and wetlands can release stored carbon as CO₂ into the atmosphere.

NATURE

Climate change affects people

Existing impacts and future risks include melting ice, sea-level rise, worsened extreme weather events, land degradation and reduced food security.

Human activities drive nature loss

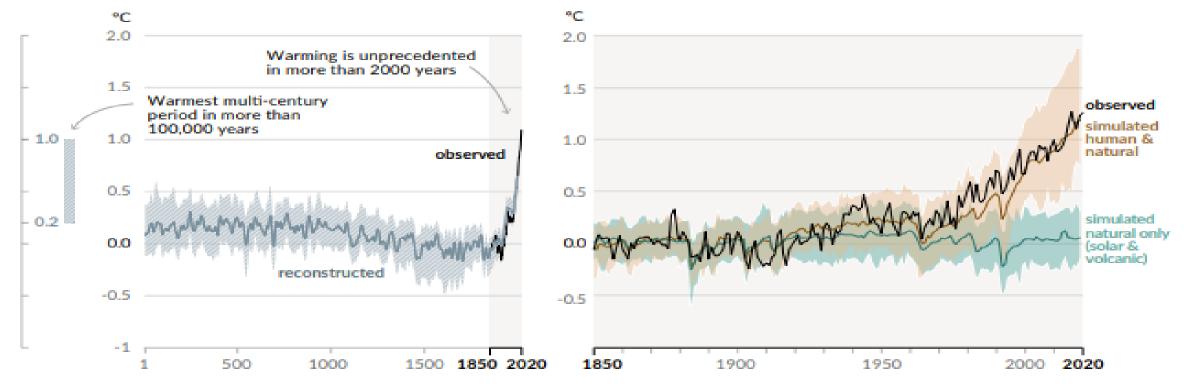
Non-climate stressors include habitat destruction, over-exploitation and pollution.

Human activities drive climate change Activities include burning coal, oil and gas for energy, conversion

of natural ecosystems and high greenhouse gas agricultural systems.

Reserved on the IPCC SITE & SPECIE and SPECIC and the IPECE Children Assessed

PEOPL


GLOBAL EFFORTS IN ADDRESSING AND MITIGATING CLIMATE CHANGE

AR6 Climate Change 2021: The Physical Science Basis

Human activities (anthropogenic activities) have contributed about 1.1°C to global warming since 1850 - 1900

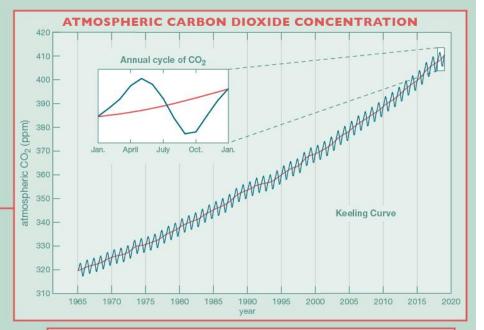
Changes in global surface temperature relative to 1850-1900

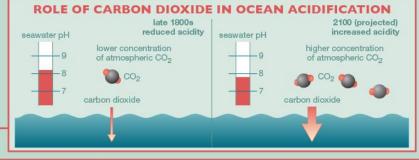
 a) Change in global surface temperature (decadal average) as reconstructed (1-2000) and observed (1850-2020) b) Change in global surface temperature (annual average) as **observed** and simulated using human & natural and only natural factors (both 1850-2020)

TIMELINE OF CLIMATE CHANGE

- 1896 Svante Arrhenius constructs the first climate model of the influence of atmospheric carbon dioxide (CO₂).
- 1920–25 Era of large-scale petroleum development begins with the opening of Texas and Persian Gulf oil fields.
- 1930s Milutin Milankovitch publishes "Mathematical Climatology and the Astronomical Theory of Climatic Changes" to explain the causes of Earth's ice ages.
- **1957** Roger Revelle and Hans E. Suess write that "human beings are now carrying out a large scale geophysical experiment" in a paper examining CO₂ uptake by the oceans.
- **1960** Curve developed by American climate scientist Charles David Keeling begins to track atmospheric CO_2 concentrations. CO_2 concentration in 1960 \approx 315 parts per million (ppm).

1973 First oil shock

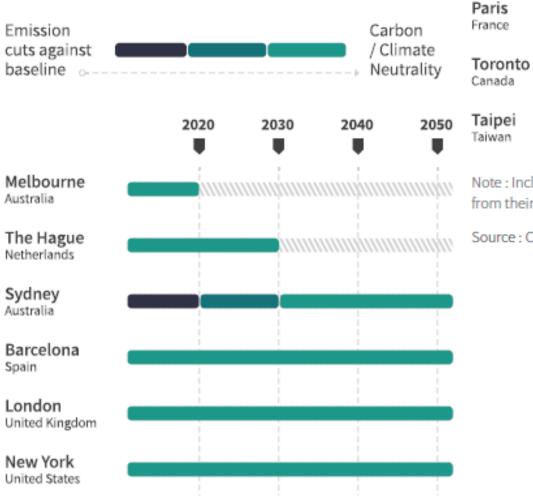

1974 First evidence of chlorine chemicals being involved in ozone depletion is published.

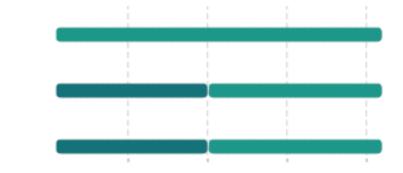

1979 Second oil shock

- **1980** Keeling Curve: CO_2 concentration in 1980 \approx 337 ppm.
- 1990 First Intergovernmental Panel on Climate Change (IPCC) report notes pattern of past warming while signaling that future warming is likely.
- 1992 United Nations conference in Rio de Janeiro creates the UN Framework Convention on Climate Change.

© Encyclopædia Britannica, Inc.

- **1997** Kyoto Protocol is created with the intent to limit greenhouse gas (GHG) emissions from industrialized countries. The U.S., the largest GHG emitter at the time, does not sign on.
- **2000** Keeling Curve: CO_2 concentration in 2000 \approx 367 ppm.
- 2001 Third IPCC report notes that warming resulting from GHG emissions has become very likely.
- 2005 Kyoto Protocol goes into effect. All major industrialized countries sign on except the U.S.
- 2006 China becomes the world's largest GHG emitter.
- 2007 Fourth IPCC report notes that effects of global warming are occurring. -
- 2011 Canada withdraws from the Kyoto Protocol.
- **2013** Keeling Curve: CO_2 concentration in 2013 \approx 400 ppm.
- 2015 Paris Agreement (which replaces the Kyoto Protocol) is adopted by nearly 200 countries, including the U.S.
- 2016 Paris Agreement goes into effect.




NATIONS RATIFYING PARIS AGREEMENT

Global Cities Commitment

Some of the cities are doing the most to address climate change. According to Bloomberg.com, the following cities are setting out the most rigorous plans to achieve carbon or climate change neutrally by 2050. Pushing Green Ambition

Note : Includes only cities with target of 50% or more cut in emissions from their respective baseline year

Source : CDP Climate A List, Bloomberg

Global Cities Commitment - Melbourne

A CITY THAT CARES FOR THE ENVIRONMENT

Environmental sustainability is the basis of all Future Melbourne goals. It requires current generations to choose how they meet their needs without compromising the ability of future generations to be able to do the same.

Strategic priority 1:100 per cent renewable energy

Strategic priority 2: Zero emissions buildings and precincts

Strategic priority 3: Zero emissions transport

Strategic priority 4: Reducing the impact of waste

- Been certified carbon neutral for our operations every year since 2012
- Cut emissions from our council operations by 53% between 2013 and 2019
- Purchased 100 per cent renewable energy through the Melbourne renewable energy project
- Planted 3000 trees a year to grow our urban forest, with over 22,000 trees planted since 2012
- Switched our major events such as Melbourne fashion week, Melbourne music week and Melbourne knowledge week to be certified carbon neutral
- Invested \$17.1 million of clean energy finance corporation funds in energy efficiency and renewable energy, including 2244 solar panels installed and 11,816 street lights
- Accelerated waste avoidance and resource recovery through centralized garbage and recycling hubs across the city.

https://www.melbourne.vic.gov.au/sitecollectiondocuments/cli mate-change-mitigation-strategy-2050.pdf

Global Cities Commitment - Netherlands

Press release The Netherlands is well prepared to reduce CO2 emissions, IEA policy review says

23 September 2020

The Climate Act has turned the focus of the Netherlands' climate policy emphatically on the long term. The act specifies a final target for 2050 and an interim target for 2030. With regard to the sector-specific targets under the national Climate Agreement, the government has not only taken into account cost-efficiency between now and 2030, but also and expressly steps that need to be taken beyond that date to achieve the 2050 target. For this reason, the first Climate Plan under the Climate Act also contains policy initiatives to prepare for the long term.

The Netherlands has focused its energy and climate policy on cutting greenhouse emissions, with targets to reduce emissions by 49% by 2030 and by 95% by 2050 from 1990 levels. In June 2019, it adopted a national Climate Agreement that was developed through a process involving diverse groups from across Dutch society that worked together to define policies and measures aimed at achieving these targets.

https://www.iea.org/news/the-netherlands-is-well-prepared-to-reduce-co2-emissions-iea-policy-review-says

Global Cities Commitment – Sydney

News_

University of Sydney commits to climate action, sustainability

26 August 2020

Ambitious targets to help change our world

https://www.sydney.edu.au/news-opinion/news/2020/08/26/university-ofsydney-commits-to-climate-action-sustainability.html

Sydney Airport commits to net zero by 2030

21 May 2021

https://www.sydneyairport.com.au/corporate/media/corporatenewsroom/sydney-airport-commits-to-net-zero-by-2030 Australia's Long-Term Emissions Reduction Plan is a whole-of-economy plan to achieve net zero emissions by 2050.

Australia's Long-Term Emissions Reduction Plan

A whole-of-economy plan to achieve net zero emissions by 2050

The Plan outlines:

1)drive down the cost of low emissions technologies

2) deploy these technologies at scale

3) help regional industries and communities seize economic opportunities in new and traditional markets

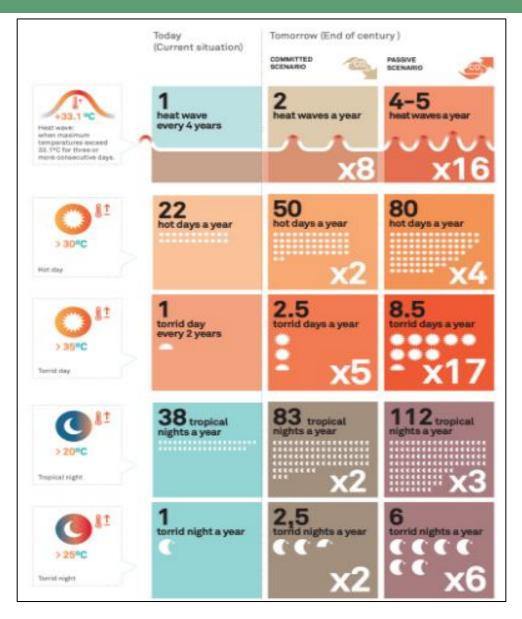
4) work with other countries on the technologies needed to decarbonise the world's economy.

Global Cities Commitment – Sydney

NSW Government action on climate change

NSW Climate Change Policy Framework

The NSW Government has released the NSW Climate Change Policy Framework, which commits NSW to the aspirational objectives of achieving net zero emissions by 2050 and helping NSW to become more resilient to a changing climate.

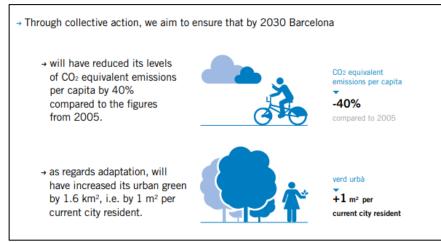

The policy framework defines the NSW Government's role in reducing carbon emissions and adapting to the impacts of climate change.

The NSW Government is providing energy bill relief for households and businesses through programs to promote energy efficiency:

- discounts on high efficiency fixed appliances for households
- discounts for small businesses to upgrade to energy saving equipment
- training for small businesses to save energy and money
- energy efficiency support for manufacturers
- more efficient street lighting
- new energy efficiency standards for appliances, buildings and infrastructure
- the Net Zero Plan programs, including the NSW Electric Vehicle Strategy; the Net Zero Industry and Innovation Program; the Hydrogen Program; the Energy Security Safeguard; and other energy efficiency programs for households and businesses.

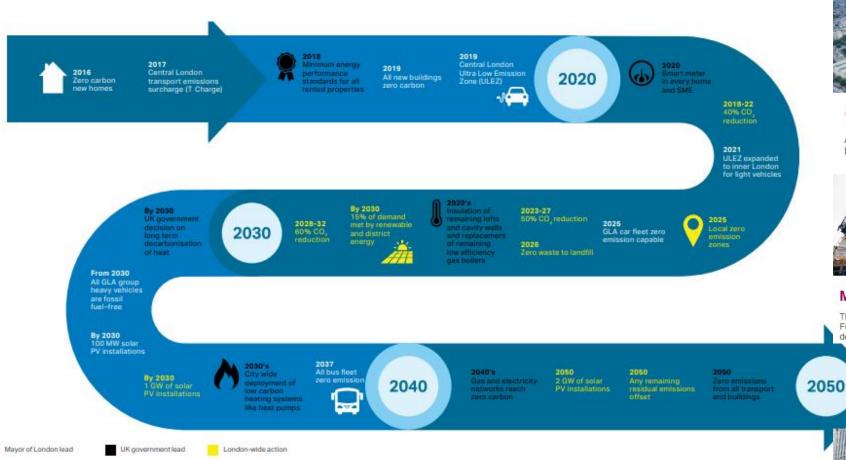
https://www.environment.nsw.gov.au/topics/climate-change/nsw-climate-change-fund/programs

Global Cities Commitment – Barcelona



To reach the target of reducing emissions by 45% by 2030, on route to being carbon neutral by 2050, the Barcelona Climate Plan 2018 -2030 sets five main priority areas and 18 action areas, which are outlined below: https://www.c40knowledgehub.or

- 1) People First
- 2) Starting at home
- 3) Transforming communal spaces
- 4) Climate economy
- 5) Building together


https://www.c40knowledgehub.or g/s/article/Barcelona-s-Climate-Action-Plan-2018-2030?language=en_US#:~:text=Ba rcelona's%20Climate%20Plan%20 2018%20%2D%202030,becoming %20carbon%20neutral%20by%20 2050.

https://ajuntament.barcelona.cat/ecologiaurbana/sites/default/files/Barcelona%20Commitement%20to %20Climate.pdf

https://www.c40knowledgehub.org/s/article/Barcelona-s-Climate-Action-Plan-2018-2030?language=en_US

Global Cities Commitment – London

What is needed by 2050?

To make London a zero carbon city requires action from the Mayor, businesses, communities, boroughs and national government.

1.5C Compatible Plan An analysis of the different routes to becoming a zero carbon city.

MEEF

The Mayor of London's Energy Efficiency Fund (MEEF) is a £500m investment fund to deliver the low carbon projects

Green New Deal Fund

The Mayor fund to support projects that will boost green jobs and tackle air pollution and the climate emergency.

Business Climate Leaders

The Mayor of London is working with businesses to help step up the fight against climate change.

Divestment

The Mayor is taking action to divest London's pension funds from fossil fuels and is working with others to join him.

Wider climate impacts

Measuring the impact of greenhouse gases beyond London's boundaries

Global Cities Commitment – New York

What is New York doing about Climate Change? Plans and Programs

Climate Leadership and Community Protection Act Climate Risk and Resiliency Act New York just passed the most ambitious climate **Statewide Climate Climate Smart Communities** Planning target in the country Charge NY **Transportation and Climate Initiative** Carbon-free electricity by 2040 and a net-zero carbon economy by 2050. By David Roberts | @drvolts | Updated Jul 22, 2019, 8:56am EDT **Greenhouse Gas Regional Greenhouse Gas Initiative (RGGI) Inventory and Build Smart NY** Reduction New York City's Net-Zero Carbon Target for 2050 Is Achievable, Study Finds Landmark joint study provides most comprehensive analysis to date of scenarios for NYC's energy supply and demand through midcentury **Renewable Energy Portfolio Standard** Read the full study **Renewable Energy** April 15, 2021 **Small Wind Turbine Program** NEW YORK - New York City can achieve carbon neutrality by 2050 through a dramatic ramp-up of **Renewable Heat NY** NY Sun

https://www.dec.ny.gov/energy/44992.html

Global Cities Commitment – Paris

The Paris Agreement

- 1. The Paris Agreement is a landmark international accord that was adopted by nearly every nation in 2015 to address climate change and its negative impacts.
- 2. The agreement aims to substantially reduce global greenhouse gas emissions in an effort to limit the global temperature increase in this century to 2 degrees Celsius above preindustrial levels, while pursuing the means to limit the increase to 1.5 degrees.
- 3. The agreement includes commitments from all major emitting countries to cut their climate pollution and to strengthen those commitments over time.
- 4. The Paris Agreement is a legally binding international treaty on climate change. It was adopted by 196 Parties at COP 21 in Paris, on 12 December 2015 and entered into force on 4 November 2016.

Global Cities Commitment – Canada

Overall rating HIGHLY INSUFFICIENT				
Policies & action HIGHLY INSUFFICIENT < 4°C WORLD		Domestic target ALMOST SUFFICIENT < 2°C WORLD	Fair share target INSUFFICIENT < 3°C WORLD	Climate finance HIGHLY INSUFFICIENT
Net zero target	year 2050	comprehensiveness evaluated as average	Land use & forestry	impact on overall emissions is relevant

https://climateactiontracker.org/countries/canada/

- The 2016 Pan-Canadian Framework on Clean Growth and Climate Change (PCF) is Canada's first-ever national climate plan that was developed with provinces and territories, and in consultation with Indigenous peoples.
- In December of 2020, the Government of Canada introduced A Healthy Environment and a Healthy Economy – Canada's strengthened climate plan.
- 3. Canada is now on a path to exceed its 2030 Paris Agreement emissions reduction target and has the building blocks in place to get to a prosperous net-zero emissions future by 2050.

Canada's Climate Actions for a Healthy Environment and a Healthy Economy

The *Canada's Climate Actions for a Healthy Environment and a Healthy Economy* report provides an overview of climate actions taken in Canada. As committed in December 2020, a path forward on pricing carbon is also included.

Net-Zero by 2050

The move to a cleaner, prosperous economy needs to be both an immediate priority and a sustained effort over the years and decades ahead. To meet this long-term goal, Canada needs to keep innovating, strengthening, and building on existing measures.

That is why Canada is committed to achieving net-zero emissions by the year 2050 and why the Government introduced the *Canadian Net-Zero Emissions Accountability Act* in Parliament on November 19, 2020. The Act, once passed, will formalize Canada's 2050 target, and establish a series of interim emissions reduction targets at 5-year milestones toward that goal.

Global Cities Commitment – Taiwan

Sgro and Chen: Let Taiwan play a part in the global effort to fight climate change

Although it has slowed the growth of its greenhouse gas emissions more than any country in Asia since 2015, Taiwan is excluded from the United Nations Framework Convention on Climate Change (UNFCCC) because of political pressure from China.

Judy Sgro, Winston Wen-yi Chen Oct 26, 2021 • 1 day ago • 3 minute read • 💭 Join the conversation

Taiwan Can Help (with climate change)

Taiwan Climate Alliance spearheaded by Vice President Lai Ching-te making a difference

● 1443 Y Tweet ● 分享 分字 Like 22

By William Wu, Taiwan News, Contributing Writer 2021/09/02 17:22

Taiwan eyes net zero emissions by 2050

Impact of climate change prompting country to join global cause of going carbon neutral

● 1790 ▼ Tweet ● 分束 ● Share ↓ Like 65
 By Huang Tzu-ti, Taiwan News, Staff Writer 2021/08/31 10:29

As Taiwan models net zero scenarios, campaigners push for 2050 target

Published on 14/12/2020, 2:30pm

<u>https://ottawacitizen.com/opinion/sgro-and-chen-let-taiwan-play-a-part-in-the-global-effort-to-fight-climate-change</u> <u>https://www.taiwannews.com.tw/en/news/4280724</u>

MALAYSIA EFFORTS IN ADDRESSING AND MITIGATING CLIMATE CHANGE

Engagement with the international community

Engagement with the International Community

UNFCCC	
Signed: 9 June 1993	
Ratified: 13 July 1994	
Kyoto Protocol	
Signed: 12 March 1999	

Type of Party Non-Annex I

Ratification status

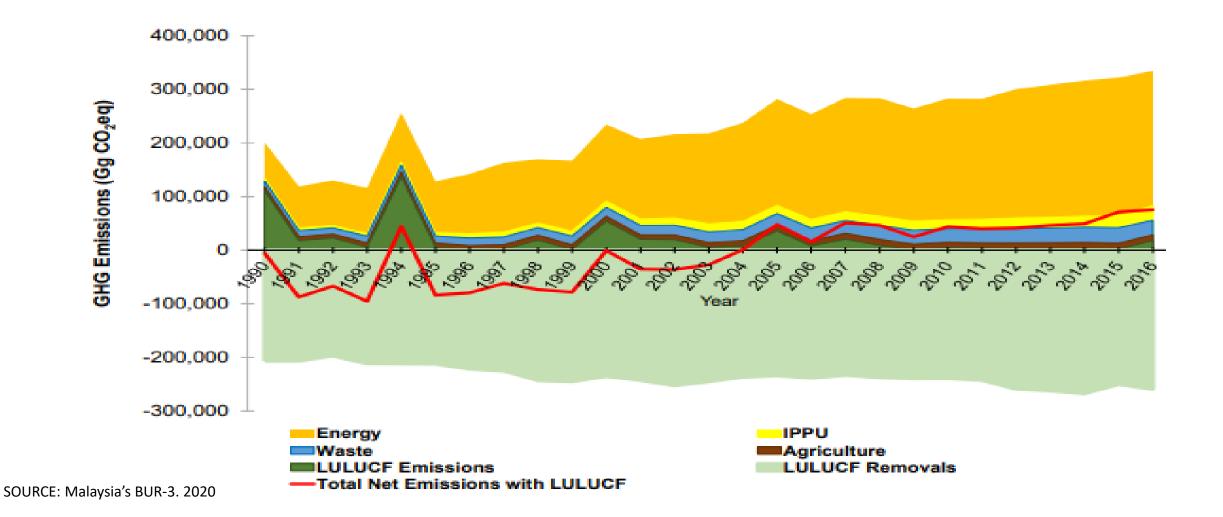
Paris Agreement Date of signature: 22 April 2016 Date of ratification: 16 November 2016

Kyoto Protocol

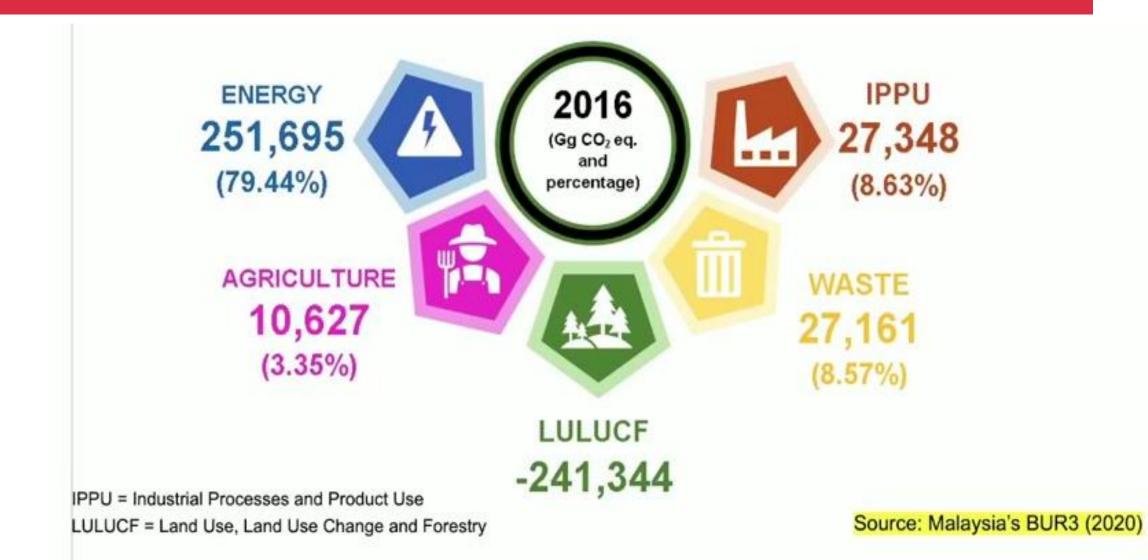
Date of signature: 12 March 1999 Date of ratification: 04 September 2002 The **Kyoto Protocol** is an international agreement linked to the United Nations Framework Convention on Climate Change which was adopted on 11 December 1997 and came into force on 16 February 2005. The Protocol, which has been ratified by Malaysia, encourages a reduction in the emission of harmful gases from industries, and sets binding targets for 37 industrialized countries (Annex I countries) and the European community for reducing greenhouse gas emissions.

The **Paris Agreement** under the United Nations Framework Convention on Climate Change (UNFCCC) was adopted in 2015. The objective of the Agreement is to strengthen the global response to the threat of climate change. The aim is to keep global temperature rise well below 2 degrees Celsius above pre-industrial levels, and to pursue efforts to limit the temperature increase even further to 1.5 degrees Celsius.

Malaysia's first Nationally Determined Contribution


Malaysia's First Nationally Determined Contribution

(Updated Submission 30.7.2021)


"Malaysia intends to reduce its economy-wide carbon intensity (against GDP) of 45% in 2030 compared to 2005 level. The updated NDC includes the following increased ambition:

- The 45% of carbon intensity reduction is unconditional;
- This target is an increase of 10% from the earlier submission;
- The GHG coverage is expanded from three (3) to seven (7) GHGs:
 - Carbon dioxide (CO₂)
 - Methane (CH₄)
 - Nitrous axide (N₂O)
 - Hydrofluorocarbons (HFCs)
 - Perfluorocarbon (PFCs)
 - Sulphur hexafluoride (SF₄)
 - Nitrogen trifluoride (NF₃).

Malaysia Sectoral Time Series of GHG Emissions from 1990 to 2016

Major Sources of GHG in Malaysia

Mitigation actions and key adaptation actions

Aitigation Actions	Key Adaptation Actions
 Renewable Energy & Energy Effi Transportation Recycling activities Biogas recovery from palm oil Forestry 	ciency Addressing flood Coastal protection Water and food security Public health
	Source: Malaysia's BUR-3, 20
	auium I 3 August 2021 I 10-11am zaini@kasa.gov.my

Key climate change tasks 2021/2022

Key Climate Change Tasks 2021/2022

- Malaysia Climate Change Council (MyCAC)
- Completion of Malaysia's Updated NDC to UNFCCC
- Preparation of Malaysia's 4th NC & BUR to UNFCCC (NC-4 & BUR4)
- Development of climate change legal framework
- Development of carbon market mechanism
- Review of 2009 Climate Change Policy
- Malaysia's Long Term Low Emissions Development Strategy (LT-LEDS)
- National Adaptation Plan NAP
- Establishment of Green House Gas Inventory Centre
- National Low Carbon Cities Blueprint
- National Low Carbon Mobility Blueprint Mathematical Strength St

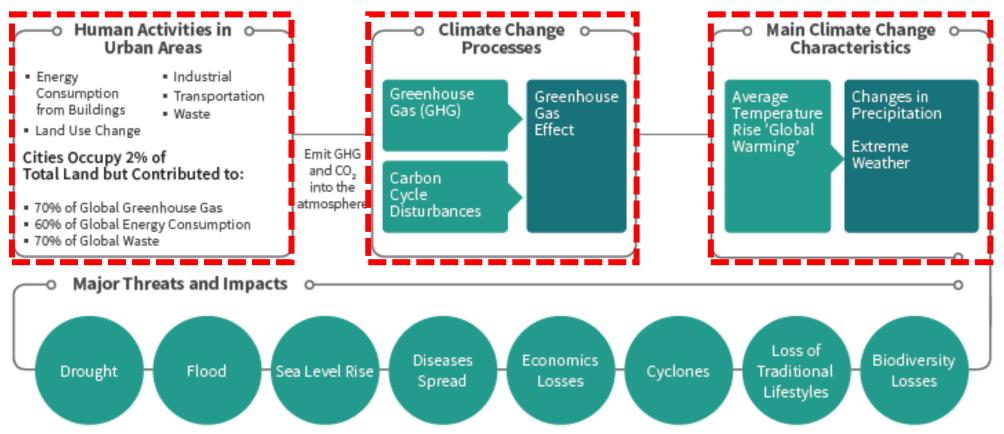
NATIONAL LOW CARBON CITIES MASTERPLAN

Definition of low carbon cities

There is no single or universal definition for low carbon development or low carbon cities. However, the masterplan has defined Low Carbon Cities as follows :

A low carbon city is defined as a city that implements low carbon strategies to meet its environmental, social and economic needs of the city. The city measures, manages and mitigates greenhouse gas emissions to reduce its contribution to climate change.

The definition emphasizes on three (3) main elements :


- 1. Pursue a systematic approach i.e. establish documented strategies and action plans;
- 2. Employ area wide strategies i.e. cover all potential emission sectors within city boundary; and
- 3. Set ambitious GHG reduction target i.e. establish baseline/peak as well as short and long term reduction targets. Note: 'ambitious' refers to GHG reduction target that surpass the national GHG target and towards carbon neutrality.

Essentially, low carbon cities are defined as cities with specific strategies, plans and targets on how to reduce GHG emissions that covers all potential emitting sectors within the city boundary.

Cities, urbanization and GHG emissions

Cities are the main engines for a dynamic economic growth and the focal points of most population. However the process of urbanization has contributed significantly to the increase of GHG emissions. Thus, fostering urban development in the most sustainable manners can reduce energy demand, consumption and GHG emissions.

Cities and urbanization increase the proliferation of CO₂ and GHG emissions

The 3M approach

The 3M approach is introduces to guide cities to position themselves as major players in climate change mitigation, as well as set an example for the development of emission reduction strategies at the local level. The 3M approach consists of three (3) actions below:

MEASUREMENT

of the GHG emissions by establishing a baseline and providing periodic monitoring

It is essential that cities measure and establish an inventory of their GHG emissions for :

- Assessing and monitoring their efforts in addressing climate change
- Evaluating mitigation options in assessing the effectiveness of policies and measures
- Making long-term emission projections (i.e. setting targets)

of the low carbon development in terms of policy, targets and planning

- It is also imperative that cities develop as well as update strategies/action plans to serve as a guide in the implementation of mitigation measures at local level.
- These documented strategies or action plans signify the systematic approach in carrying out the cities' reduction strategies.

MITIGATION

of the GHG emissions through design and implementation of programmes and projects

 Mitigation is being referred to measures and actions taken to reduce GHG emissions.

Note :

Adaptation is not directly part of the 3M Approach as adaptation addresses the impacts of climate change. All adaptation measures are based on reducing vulnerability to climate impacts. But adaptation can be part of the mitigation effort to establish a more resilient city.

Key challenges

 \mathbf{C}

Seven (7) key challenges were reco	ognized as barriers to	low carbon pathway ii	n most Malaysian cities
Policies and Direction	2 Implementation and Execution	3 Source of Funding and Financing	4 Low Carbon Development in Urban Planning
 Inconsistent implementation Gap in transition from top to bottom No specific reference to low carbon agenda Intensity versus absolute targets 	 Inconsistent implementation Not mandatory Absence of dedicated unit/entity at all levels 	 Insufficient and still lacking No dedicated fund Legal barriers for local government to generate additional income Lack of incentives 	 Weak integration between low carbon reduction strategies and existing development's document Conflicting and competing development priorities

•! •• 6 5 Ţ. **Capacity**, Capability Community Data for Participation **GHG Inventory** and Readiness Weak in public Shortage of capable Weak in availability and appreciation and people access Lack of skills and understanding Lack of proper data Lack of opportunities to Weak in accuracy understanding Lack of subject matter Inconsistent methodology participate

experts

Synopsis of the action plans

into

cities

Malaysian

Transforming

UO

Ą

σ

Ü

≥

0

In shaping the pathway of low carbon development in Malaysia, the following action plans are recommended to drive the transformation.

S

ction

Π

key

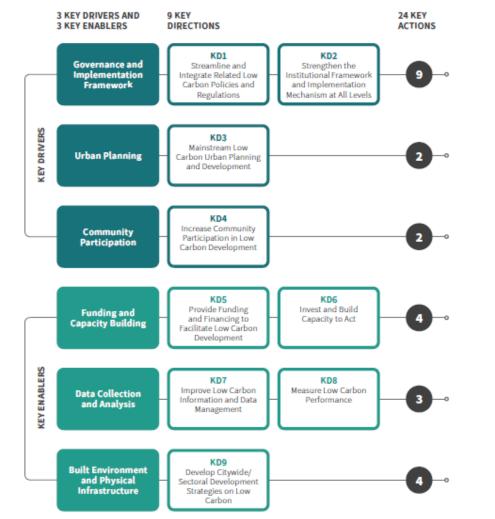
4

N

σ

Π

nS


ctio

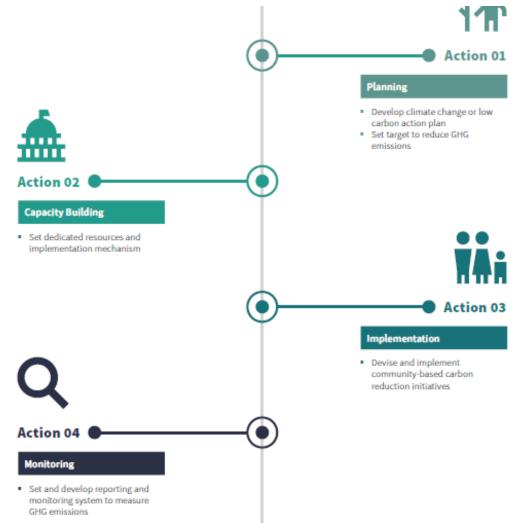
ire

σ

key

5

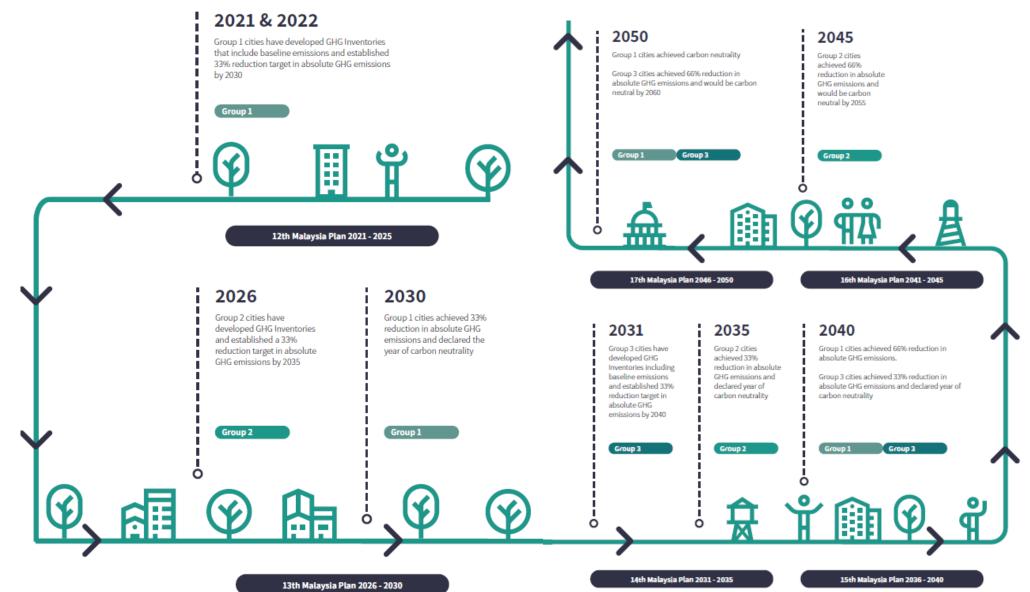
MPLEMENTATION PLANS AND TARGETS	5 >>	>>>>>	>>>>	>>>	\rightarrow	>>>	>>	>>	>>>	>>	>	>>	>>:	>>	>>	>>	>>	>>	>>	ŀ
---------------------------------	------	-------	------	-----	---------------	-----	----	----	-----	----	---	----	-----	----	----	----	----	----	----	---


	Key Drivers for Low Carbon Development
KD1:Stre	amline and Integrate Related Low Carbon Policies and Regulations
Action 1.1	Align Existing Regulation and Laws to Support Low Carbon Cities Development
Action 1.2	Align National Climate Change Policy (NCCP) to Support Low Carbon Cities Development
Action 1.3	Establish Absolute Carbon Reduction Targets for Targeted Cities (2021 - 2050)
Action 1.4	Establish Policies to Enable Top Down Approach for Low Carbon Implementation at State Level
Action 1.5	Integrate Low Carbon Guidelines and Components into Existing and New Planning Development Documents
Action 1.6	Promote Agriculture, Forestry and Other Land Uses (AFOLU) as Part of GHG Reduction Measures
KD2 : Stre	engthen the Institutional Framework and Implementation Mechanism at All Levels
Action 2.1	Improve the Governance and Implementation Structure at Federal and State Levels
Action 2,2	Strengthen the Implementation Mechanism at the Ground Level
KD3 : Mai	nstream Low Carbon Urban Planning and Development
Action 3,1	Embed Low Carbon Elements in Urban Planning and Development
Action 3,2	Develop Standard Guideline of GHG Emission Reduction Strategies for Easy and Consistent Implementation at Ground Leve
KD4 : Inc	rease Community Participation In Low Carbon Development
Action 4.1	Nurture Active Participation and Awareness through Effective Communication Plan
Action 4,2	Use Education to Foster Human Behavioural Changes to Sustainable Practices
	Key Enablers for Low Carbon Development
KD5 : Prov	ide Funding and Financing to Facilitate Low Carbon Development
ction 5,1	Create Specific Low Carbon Development Fund and Budget to Implement Low Carbon Programmes and Initiatives
ction 5,2	Create Alternative Funding to Finance Low Carbon Initiatives and Programmes at Local Level
KD6:Inve	st and Build Capacity to Act
ction 6,1	Develop and Place Dedicated Officers at State and Local Levels to Increase Productivity and Create Holistic Manpower Support System
ction 6,2	Develop and Nurture Knowledge, Expertise and Skills in Low Carbon Development Area at State and Local Levels
KD7 : Imp	rove Low Carbon Information and Data Management
ction 7.1	Establish Proper and Efficient System of Data Collection and Management for GHG Inventory Purposes
ction 7,2	Develop Central Online System on GHG Emission Reporting and Data Management to be Used at All Levels
	sure Low Carbon Performance
ction 8,1	Align Performance-Based Tools to Global Protocol For Community-Scale Greenhouse Gas Emission Inventories (GPC)
	elop Citywide/Sectoral Development Strategies on Low Carbon
ction 9,1	Spatial Planning and Development
ction 9,2	Energy
ction 9,3	Transportation
ction 9,4	Waste

Target cities and others cities

A total of 33 local and regional government has been selected as Target Cities. The main criteria for the selection is the total number of population in the city/area must exceed 300,000 - based on the 2010 census data by the Department of Statistics of Malaysia - with exception for Putrajaya Corporation, Kulai Municipal Council, Pasir Gudang City Council, Pontian District Council, Sepang Municipal Council and Hang Tuah Jaya Municipal Council.

Cities that are not selected as target cities, but are keen in implementing mitigation measures to reduce GHG emissions can undertake the following actions as vital steps in paving the pathway to low carbon cities or low carbon development.

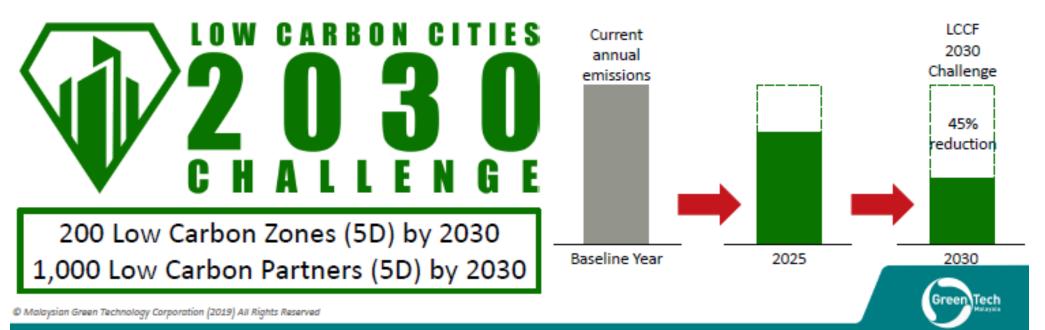


Details of 33 Selected Target Cities

			Action 02
Group 1	Group 2	Group 3	Capacity Building
 Hang Tuah Jaya Municipal Council Iskandar Malaysia Iskandar Puteri City Council Johor Bahru City Council Kuala Lumpur City Hall Kulai Municipal Council Melaka Historic City Council Pasir Gudang City Council Penang Island City Council Petaling Jaya City Council Pontian District Council Seberang Perai City Council Sepang Municipal Council Shah Alam City Council 	 Alor Setar City Council Ampang Jaya Municipal Council Ipoh City Council Kajang Municipal Council Klang Municipal Council Kuching North City Hall Kuching South City Council Miri City Council Selayang Municipal Council Seremban City Council Subang Jaya City Council 	 Kota Bharu Municipal Council Kota Kinabalu City Hall Kuala Terengganu City Council Kuantan City Council Sandakan Municipal Council Sungai Petani Municipal Council Tawau Municipal Council 	Set dedicated resources as implementation mechanis Action 04 Monitoring
			 Set and develop reporting monitoring system to mea GHG emissions

Absolute carbon reduction targets

The timeline and absolute carbon reduction targets for target cities by 2030 until 2050 are as follows:


MALAYSIA CITIES COMMITMENT

LOW CARBON CITIES 2030 CHALLENGE

Cities are responsible for over 70% of GHG emissions.

Reducing these emissions is key to addressing climate change and meeting Malaysia's commitment to the Paris Climate Agreement.

To accomplish this, MGTC is introducing the Low Carbon Cities 2030 Challenge.

DRIVER 1

Malaysia's commitment to reduce GHG emissions intensity by 45% by 2030.

To limit global warming to 1.5°C, we have to reduce GHG emissions by 45% by 2030.

IPCC G

Global Warming of 1.5°C

An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.

© Malaysian Green Technology Corporation (2019) All Rights Reserved

LCC 2030 CHALLENGE MOTIVATION

Low carbon cities have multiple direct and indirect benefits to the residents, businesses and the city.

4 key benefits are:

CLEA	NER

- Cleaner air from reduced pollution from fossil fuel vehicles
- Cleaner environment from the reduction in waste that goes to the landfills

COOLER

- Cooler city from increase in greenery and tree cover
- Cooler city from reduced urban heat island effect
- Cooler buildings and homes from green buildings

HEALTHIER

- Healthier environment from reduced air pollution and contamination
- Healthier residents from increased outdoor activity in cycling and walking

CHEAPER

- Cheaper operating cost for electricity and water from efficiency measures
- Reduced wastage from more efficient and productive use of resources

LCC 2030 CHALLENGE FOCUS ELEMENTS & TARGETS

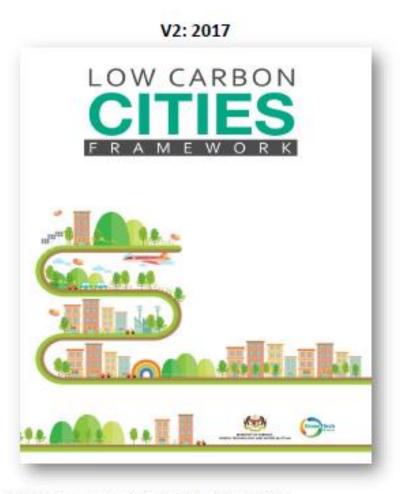
The LCC 2030 Challenge will focus on 5 key elements:

Reducing CO₂ emissions from:

- Electricity consumption from buildings and common areas
- Petrol and diesel private vehicle use
- Waste ending up in landfills
- Water consumption from buildings and common areas

Increasing CO₂ sequestration from:

Trees, green spaces and water bodies


The LCC 2030 Challenge targets a total of 45% CO₂ emissions reduction by adopting these measures:

- Energy: Maximize building energy efficiency and increasing adoption of renewable energy
- Mobility: Increasing the use of public transport (bus), cycling, walking and other low carbon modes
- Waste: Reduce the amount of waste that goes to the landfills
- Water: Maximize water efficiency and increase adoption of rainwater harvesting

LCC 2030 CHALLENGE REFERENCE

) Malaysian Green Technology Corporation (2019) All Rights Reserved

Notes:

- The Low Carbon Cities Framework document serves as the main reference document for Low Carbon Cities in Malaysia.
- Main component is Chapter 3 which is a Design Guideline to give an idea of how a Low Carbon City should look like.
- Use this to assist in developing Action Plan.
- The LCCF Checklist document is recommended as a guide for new developments.
- 5. LCCF V3 is in development.

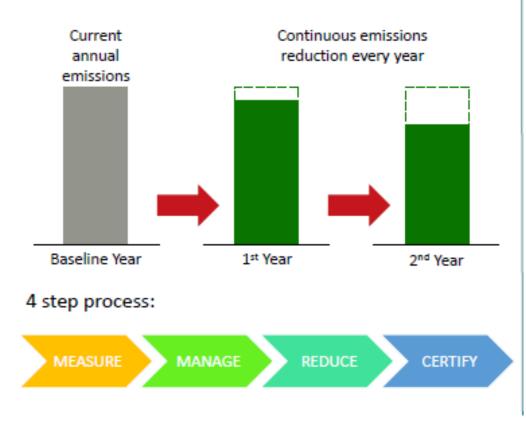
CATEGORIES

LOW CARBON ZONE

Applicable for (area > 50 hectares):

- Local Authorities
- Universities
- Industrial & Commercial Parks
- Economic Corridors
- Townships
- Naval & Army Base

INDIVIDUAL BUILDING / ORGANISATION


Applicable for:

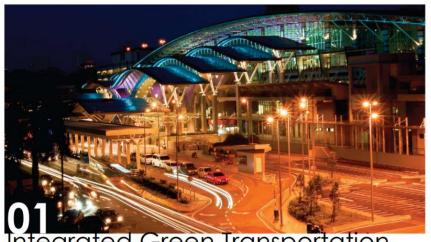
- Commercial Buildings (office, malls, hotels, etc.)
- Hospitals
- Schools
- Ports & Terminals
- Sports Complex
- Parks

© Malaysian Green Technology Corporation (2019) All Rights Reserved

ASSESSMENT & RECOGNITION

ASSESSMENT

RECOGNITION


<u>Provisional Certificate</u> Develop baseline and pledge commitment to reduce emissions

Diamond Recognition

Achieve emissions reduction based on the scale below:

© Malaysian Green Technology Corporation (2019) All Rights Reserved

Integrated Green Transportation

	Sub-actions	Measures
1	Integrated Public Transportation	Public transport system improvement
		Introduce rail based and water based public transport
		Efficient/ seamless inter-modal transfer (interchange) facilities
2	Improvement of JB - Singapore, JB-KL Connectivity	Intercity High Speed Rail Transit (HSRT)
3	Diffusion of Low Carbon Vehicles	Promote use of low carbon vehicles
4	Enhancing Traffic Flow Conditions and Performance	Transportation Demand Management (TDM)
5	Green Transportation in Rural Areas	Improve public transport services & use in rural areas
6	Green Freight Transportation	Modal shift to greener freight transport modes
		Promote green/ hybrid freight transport

	Sub-actions	Measures		
1	IM as Global Hub for Green Industry	Tax incentives & fiscal measures to attract green industries		
		Promotion of R&D in strategic sectors		
2	Decarbonising Industries	Reducing energy intensity of industrial production process		
		Carbon reduction and environmental standards/ rules/ regulation		
3	Green Employment in Existing Indus- tries	Promote the ecological & economic benefits of greening existing industries		
	thes	Promotion of environmental analytical & advisory services towards improving resource & energy efficiency in existing industries		
4	Human Capital Development in Green Industry	Upgrading/ retraining existing pool of professional & semi-professional workers		
	industry	Regional education hub for green industry		

	Sub-actions	Measures
1	Development Planning for Low Carbon Iskandar Ma- laysia	Institutionalisation of low carbon vision & carbon reduction tar- gets in all statutory plans (Johor Bahru District Local Plan and IM Comprehensive Development Plan)
		Design clear low carbon zoning and urban design codes that are geared towards Iskandar Malaysia's smart urban growth
2	Planning Control Process, Procedures and Mechanism for Materializing LCS in Iskandar Malaysia	Reform and streamline currently fragmented planning approval processes
	Change (19, 2020) - Michael States (2010) - Contrast (2020) - Contrast (2020)	Enhance Substantive (Content) Aspects of Development Planning Approval
3	Development of Necessary Human Capital for Opera- tionalising and Implementing Iskandar Malaysia's Low Carbon Society Vision	Progressive retraining of planners, architects, engineer and other built environment professional and semi-professional in state and local planning authorities
4	Iskandar Malaysia LCS Monitoring , Reporting and Publication System	Setting up of a Low Carbon Monitoring Unit in All Local Authori- ties in Iskandar Malaysia

	Sub-actions	Measures
1	Promoting Green Building in New	Expedite approval process for green buildings
	Construction	Showcase/prototype of a green building in IM
2	Energy Efficiency Improvement of Existing Buildings (Retrofitting)	Identify candidate buildings (commercial and offices) for retrofitting demonstra- tion project
3	Green Construction	Developers to promote green design
		Use of recyclable and low embodied energy building materials
4	Green Building Design and Technology	Introduce Building Energy Management System (BEMS) & Industrialised Building System (IBS)
		Climatically responsive building design
		"Built to last" buildings - longer building lifespan
5	Rural Green Buildings	Conservation & promotion of vernacular, climatically adapted architecture in rural areas

Green Energy System and Renewable Energy

	Sub-actions	Measures
1	Promotion of Renewable/ Alternative Energy	Harnessing solar energy
		Utilisation of energy from waste
		Hydrogen utilization
2	2 Establishment of Advanced Energy System	Employing of distributed energy system
		Widespread use of energy storage
		Diffusion of demand response technologies
		Incorporation of power management system (IT Technologies)
3	Provision of Incentives and Subsidies and	Incentives for green energy initiative
	Derivation of Tariff Rates	Tariff for future grid

	Sub-actions	Measures
1	Awareness through Education	Enhancing general public awareness
		Enhancing school children awareness
2	Smart Working Style	Work from home
		Staggered working hour
3	Promote Energy Efficiency	Promote sales and use of energy efficient appliances
		Promote energy saving practices
		Incentives for green energy initiatives
4	Promote "Smart Travel Choices"	Public information on "Smart Travel Choices"
5	Stock-taking for Low Carbon Lifestyle	Promote self management of lifestyle to monitor $\rm CO_2$ emission and expenditure in residential and community

Community Engagement and Consensus Building

	Sub-actions	Measures	
1	Share LCS Information and Gather Opinion through Stakeholder Engagement	Periodic LCS workshops and focus group discussion (FGD) with stakeholders in IM	
		Ongoing feedback and comments on LCS actions	
2	Public Information on LCS Progress	LCS progress through mass media	
		Mobile LCS media center	
3	Developing Model Low Carbon Communities	Choose, plan & implement LCS initiatives	
4	Green Ambassadors/ Champions	Appoint individuals as neighbourhood, company, organization green ambassadors/ champions	
		Appoint ambassadors/ champions in schools	
	Sub-actions	Measures	
1	Designing Walkable City Centers and Neighbor- hoods	Providing comfortable walkways	
		Interconnected pedestrian network	
2	Designing the Cyclist-friendly City	Providing safe, comfortable, cycling network	
3	Designing the Safe City (from crime)	Crime prevention through environmental design (CPTED)	
		Increase police presence	
4	Designing Civilised & Livable Streets through Traffic Calming	Reduce vehicle speed	
		Street environmental enhancement	
Re		Reclaiming pedestrian space	

	Sub-actions	Measures
1	Promote Polycentric Growth Pattern in IM	Gradual urban function reconcentration in polycentric nodes con- nected by public transportation
2	Promote Compact Urban Development	Urban growth boundary (UGB) for Iskandar Malaysia
		Higher density mixed use development
3	Promote Transit Supportive Land Use Planning	Transit Oriented Development (TOD) & Station Area Planning (SAP)
4	Develop the 'Smart Digital City'	Information and Communication Technology (ICT)

	Sub-Actions	Measures
1	Regional Green Corridor Network	Acquisition of land for forest connections
		Protect existing forests
2	Conservation of Mangrove Forests	Reinforce protection of existing mangrove areas
		Mangrove area regeneration
3	Promote Urban Forests (urban recreation and green lungs)	Reintroduce endemic forest species into existing urban parks
		Create new urban parks
		Increasing green cover
		Reforestation
		Ongoing urban tree planting campaign
4	New Development to Retain Existing Vegetation	Enforcement of ACT 172 (Part VA: Trees Preservation Order)
5	Low Carbon Farming in Rural Areas	Promotion of low carbon farming in rural areas
6	Ecotourism and Rural-cultural Tourism	Promotion of natural resource-based and rural cultural tourism

Sustainable Waste Management

	Sub-actions	Measures
1	Promote Polycentric Growth Pattern in IM	Gradual urban function reconcentration in polycentric nodes con- nected by public transportation
2	Promote Compact Urban Development	Urban growth boundary (UGB) for Iskandar Malaysia
		Higher density mixed use development
3	Promote Transit Supportive Land Use Planning	Transit Oriented Development (TOD) & Station Area Planning (SAP)
4	Develop the 'Smart Digital City'	Information and Communication Technology (ICT)

	Sub-actions	Measures
1 Clean Air Quality		Implementation of co-benefit s of approach in policymaking process
		Promote win-win actions in Industry
		Promote low-emission vehicle and public transportation
		Compensate the negative impact of LCS CM on local air quality
2	Improve Regional Air Quality	Continuous monitoring & real-time publishing of Air Pollution Index (API) information
		Strengthen cross-border cooperation towards reducing perennial haze occurrences

	Sub-actions	Measures
1	Promote Polycentric Growth Pattern in IM	Gradual urban function reconcentration in polycentric nodes con- nected by public transportation
2	Promote Compact Urban Development	Urban growth boundary (UGB) for Iskandar Malaysia
		Higher density mixed use development
3	Promote Transit Supportive Land Use Planning	Transit Oriented Development (TOD) & Station Area Planning (SAP)
4	Develop the 'Smart Digital City'	Information and Communication Technology (ICT)

	Sub-actions	Measures
1	Sustainable Municipal Solid Waste Management	Reduction at source
		Recycling of municipal solid waste
		Extended final disposal
		Effective waste transportation
2	Sustainable Agricultural Waste Management	Biomass to wealth
3	Sustainable Industrial Waste Management	Scheduled waste reduction and treatment
		Non-scheduled waste reduction, reuse and treatment
4	Sustainable Sewage Sludge Management	Improved sewage treatment and sludge recycling
5	Sustainable Construction and Demolition Waste Management	Reuse and recycling of construction waste

UNIVERSITIES COMMITMENT

Blueprint implementation document for LCCC 2030

PHTJ 2013-

BLUEPRINT IMPLEMENTATION DOCUMENT

for Low Carbon Cities Framework (LCCF)

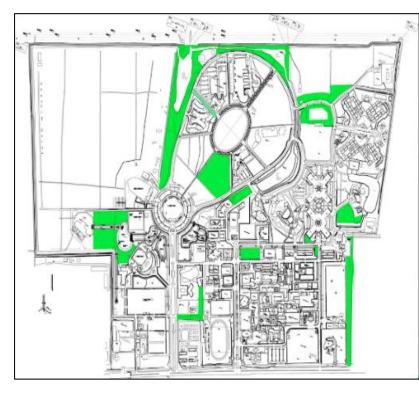
Universiti Tun Hussein Onn Malaysia 2019 - 2030

By UTHM

STRATEGIES / ACTIONS AND STATUS OF IMPLEMENTATION

SUMMARY/CONCLUSION

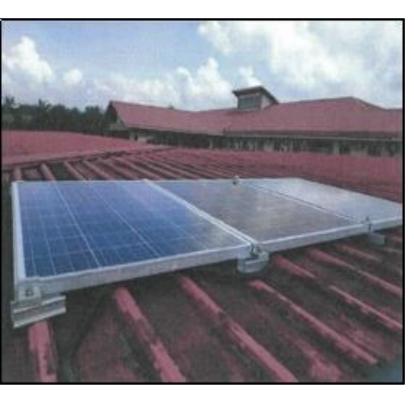
UTHM under its Low Carbon Cities Challenge 2030 (zone) has achieved and completed the following :-


- The reduction of energy consumption for UTHM was reduced by 28.29% in the final year 2020 compared to baseline of 2019
- The reduction of water consumption for UTHM was reduced by 11.00% in the final year 2020 compared to baseline of 2019
- The reduction of waste generation for UTHM was reduced by 14.13% in the final year 2020 compared to baseline of 2019
- The reduction of carbon sequestration for UTHM was increased by 4.13% in the final year 2020 compared to baseline of 2019

144

Greenery and water bodies - Current Implementation

Tree planting programme among staff and students



The 40 acres of land for the Tiny Forest Project

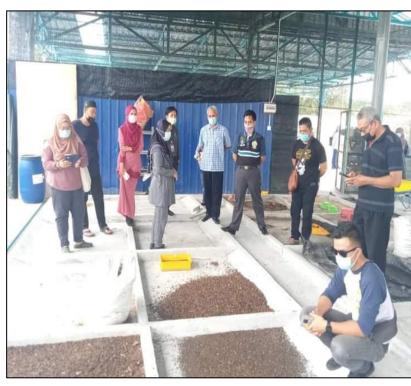
SCO, Planeteers and JPNJ staff in Tiny Forest Project at Hutan Simpan Lenggor, Kluang (2nd Series)

Energy - Current Implementation

Installation of solar panel

Implementation of natural lighting design in UTHM building

The automatic lighting sensors were installed at the Tunku Tun Aminah Library (L2 element)


Waste - Current Implementation

Cage for separation at source in few areas around UTHM

UTHM recycling collection centre

UTHM composting food waste centre

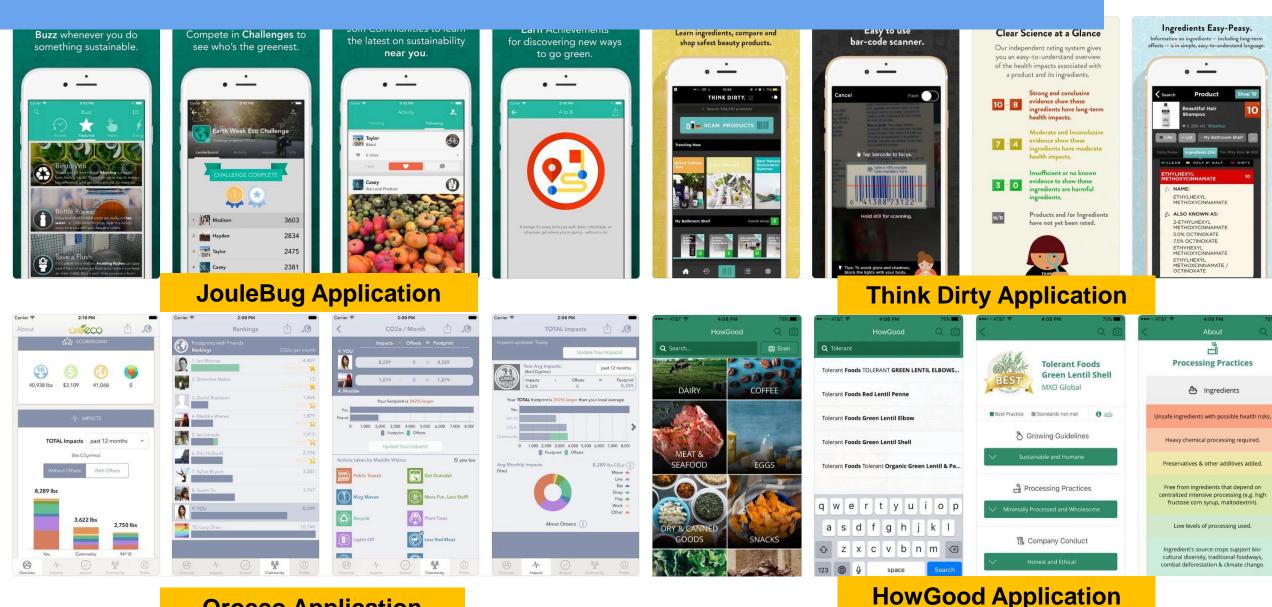
Mobility - Current Implementation

Free shuttle bus service at the UTHM campus

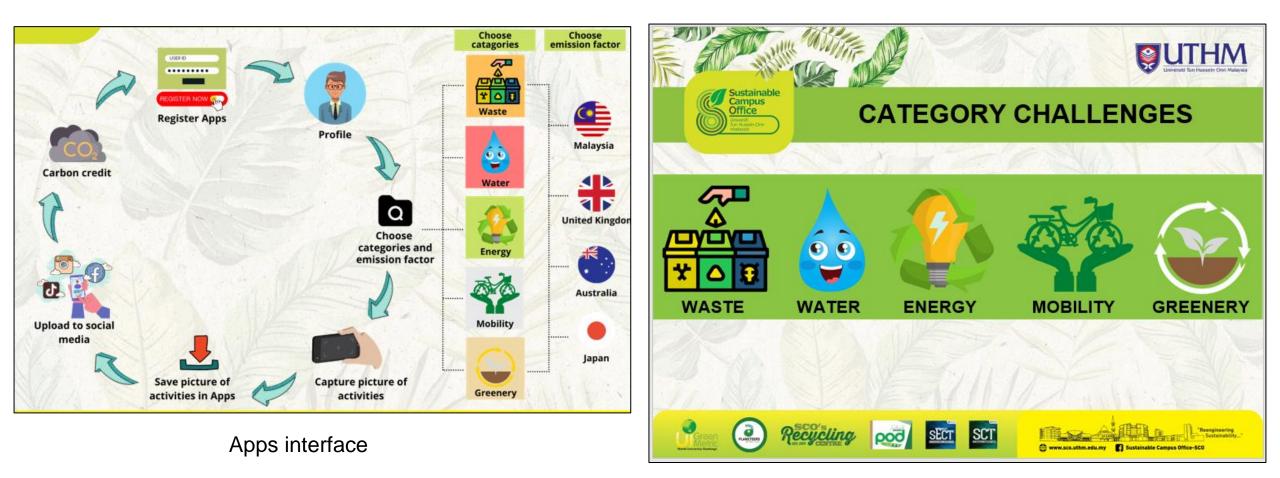
Electric vehicle used by staff in UTHM

Green U-Bicycle for rent to promote sustainability agenda at Tun Fatimah Residential College

Performance criteria for Low Carbon Cities


Figure 3.1 Breakdown of Performance Criteria and Sub-criteria

No	Performance Criteria & Sub Criteria	Page No.			
Performance Criteria 1: Site Selection					
UE 1-1	Development Within Defined Urban Footprint	33			
UE 1-2	JE 1-2 Infill Development				
UE 1-3	E 1-3 Development within Transit Nodes and Corridors				
UE 1-4	1-4 Brownfield and Greyfield Redevelopment				
UE 1-5	Hill Slope Development	37			
Perform	nance Criteria 2: Urban Form				
UE 2-1	Mixed-Use Development	38			
UE 2-2	Compact Development	39			
UE 2-3	Road and Parking	40			
UE 2-4	Comprehensive Pedestrian Network	41			
UE 2-5	Comprehensive Cycling Network	42			
UE 2-6	UE 2-6 Urban Heat Island (UHI) Effect				
Perform	nance Criteria 3: Urban Greenery and Environmental Qu	uality			
UE 3-1	Preserve Natural Ecology, Water Body and Biodiversity	45			
UE 3-2	UE 3-2 Green Open Space				
UE 3-3	UE 3-3 Number of Trees				
	Table 3.1: Performance Criteria and Sub-criteria for Urban Environment				
No					
Performance Criteria 10: Infrastructure Provision					
UI 1-1	Land Take for Infrastructure and Utility Services	69			
UI 1-2	Earthwork Management	70			
UI 1-3	Urban Storm Water Management and Flood Mitigation	71			
Perform	nance Criteria 11: Waste	1			
UI 2-1	JI 2-1 Construction Waste Management				
UI 2-2	JI 2-2 Industrial Waste Management				
UI 2-3	UI 2-3 Municipal Solid Waste (MSW) Management				
Performance Criteria 12: Energy					
UI 3-1	Energy Optimisation	76			
UI 3-2	UI 3-2 Renewable Energy				
UI 3-3	UI 3-3 Site-Wide District Cooling System				
Performance Criteria 13: Water Management					
UI 4-1 Efficient Water Management 79					
Table 3.3: Performance Criteria and Sub-criteria for Urban Infrastructure					


No				
Performance Criteria 4: Reduction Use of Private Motorised Transport on Urban Road Network				
	UT 1-1 Classified Traffic Volume Urban Road Network			
	50			
UT 1-2 Vehicle-km of Travel by Modes Performance Criteria 5: Increase in Public Transport				
UT 2-1	UT 2-1 Public Transport Ridership			
UT 2-2	Public Transport System Improvement and Coverage	54		
	nance Criteria 6: Mode Shift from Private to Public Tran otorised Transport	sport and		
UT 3-1	56			
Perforn	nance Criteria 7: Use of Low Carbon Transport			
UT 4-1	UT 4-1 Use of More Fuel Efficient Vehicles for Passenger Vehi- cles and Green Freight Transport			
UT 4-2	60			
Perforn and Jur	nance Criteria 8: Improvement to Level of Service of Ro nctions	ad Links		
5-1	Performance of Road Links and Junctions	61		
5-2 Average Link Speeds and Journey Speeds		63		
	nance Criteria 9: Utilisation of Transit-Oriented-Develog Approach	oment		
UT 6-1	UT 6-1 New Development and Redevelopment Schemes Incorporating TOD Concept			
UT 6-2	UT 6-2 Walking and Cycling Facilities to Support Access and Mobility to/from Public Transit Nodes			
	Table 3.2: Performance Criteria and Sub-criteria for Urban Transport	ation		
No	Performance Criteria & Sub Criteria	Page No.		
Perforn	nance Criteria 14: Sustainable Energy Management Sys	stem		
B 1-1	Energy Management System	81		
B 1-2 Facility Management		82		
Performance Criteria 15: Low Carbon Buildings		1		
B 2-1 Passive & Active Design		83		
B 2-2 Operational Energy Consumption		85 87		
	B 2-3 Operational Water Consumption			
B 2-4 Preserve Existing Building Stock by Retrofitting 88				
Table 3.4: Performance Criteria and Sub-criteria for Building				

INDIVIDUAL COMMITMENT

Oroeco Application

CARBON EMISSION FACTOR ACCORDING TO COUNTRY

CARBON EMISSION	JAPAN	MALAYSIA	UNITED KINGDOM	AUSTRALIA
Waste	1.114 kg CO₂e/tonne (MINISTRY OF ENVIRONMENT, JAPAN)	 Recycle = 586.531 kg CO₂e/tonne (DEFRA, 2018) Composting = 8.951 kg CO₂e/tonne (DEFRA, 2021) 	 Organic: Food and drink waste = 626.875 kg CO₂e/tonne (DEFRA, 2021) Landscape waste/garden waste = 578.959 kg CO₂e/tonne (DEFRA, 2021) Electrical waste = 8.902 kg CO₂e/tonne (DEFRA, 2021) Metal = 8.902 kg CO₂e/tonne (DEFRA, 2021) Plastic = 8.902 kg CO₂e/tonne (DEFRA, 2021) Paper and board = 1401.804 kg CO₂e/tonne (DEFRA, 2021) 	 Food waste = 2.1 tonne CO₂/e (NGA, 2021) Paper and cardboard = 3.3 tonne CO₂/e (NGA, 2021) Garden and green = 1.6 tonne CO₂/e (NGA, 2021) Inert waste (metal, plastic, glass) = 0 (NGA, 2021) Rubber and leather = 3.3 tonne CO₂/e (NGA, 2021)
Water	0.59 kg CO₂e/m3 (MDPI)	0.419 kg CO ₂ /m ³ (CCM Study, UNEP, 2012)	1. Water supply = 0.148 kg CO ₂ e/m ³ (DEFRA, 2021)	ASAN
Energy	0.506 kg CO₂e/kWh (Climate Transparency)	694. CO ₂ e/kWh (MESTECC)	 kg CO₂e per unit = 0.21233 kg CO₂e/kWh (DEFRA, 2021) kg CO₂e of CO₂ per unit = 0.21016 kg CO₂e/kWh (DEFRA, 2021) 	
Mobility	72.0 ktCO ₂ e (IPCC, 2006)	 Car = 0.18368 kg CO₂e/km (DEFRA, 2018) Motorcycle = 0.11529 kg CO₂e/km (DEFRA, 2018) Bus = 0.791 kg CO₂e/km (LCMB, 2017) 		1. Passenger car = 0.03021 kg CO ₂ /mile (EPA, 2021) 2. Motorcycle = 0.189 kg CO ₂ /vehicle-mile (EPA, 2021) 3. Bus = 0.056 kg CO ₂ /passenger-mile (EPA, 2021)
Greenery	21.4 Mt Co ₂ e (WRI)	I. Forest = 14,400 kg CO ₂ e/ha/year (NC3) 2. Landscape = 2,000 kg CO ₂ e/ha/year (NC3) 3. Water Bodies = 2,560 kg CO ₂ e/ha/year (NC3) 4. Trees = 30 kg CO ₂ e/tree/year (NC3)	11/25	

PLANETEERS

Carbon calculator website

Climatecare CARBON CALCULATOR	Climatecare CARBON CALCULATOR CHOOSE CARBON REDUCTION PROJECTS	climatecare CARBON CALCULATOR	Climatecare CARBON CALCULATOR
9 Waste ◆ WASTE CARBON EMISSIONS Calculate and offset emissions from waste here: 0.68 Waste Type Food Waste Amount 1000 Kilogram: Disposal Landfil ✓	CLINATE+CARE PORTFOLIO Dur Climate+Care mixed portfolio is specially selected to provide a rmi of the Indulation Reductions	BASKET Carbon offset type Tonnes C0 ₂ e Waste 1000 kg of food waste disposed as landfil 0.68	Cost Price Tonnes Cost Emissions offset through Climate+Care programmes – cutting carbon and improving lives across the developing world \$11.63 0.68 \$7.91 Customer Details Name Customer name Organization Organization name Email Customer email
ADD TO BASKET ADD TO BASKET	brocker and of the hole development period and bedretting for development impact - and all at an affordable price per torne. \$11.63 per tOoge SELECT THESE PHOLECTS BLECT THESE P	Total CO2e tonnes 0.68 Portfolio Price Tonnes Cost Emissions offset through Climate+Care programmes – cutting carbon and improving lives across the developing world \$11.63 0.68 \$7.91 Voucher BACK PROCEED Voucher BACK PROCEED Contentional Contention Contention Contentional Contentional Contention Conten	Choose payment method BACK CREDIT CARD CREDIT CARD budress@cfirmtecart.org Terms & Conditions AnalyTics

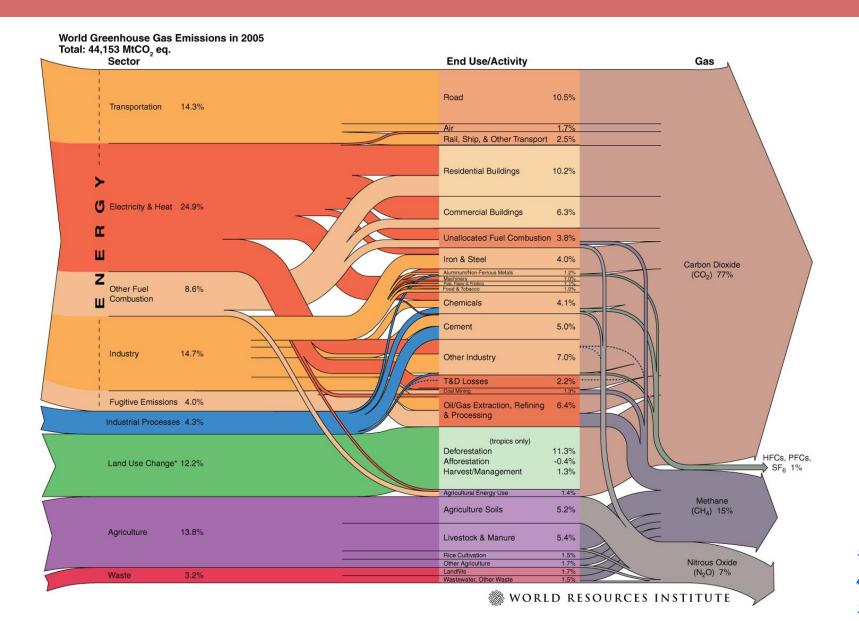
https://www.climatecare.org/calculator/

Carbon calculator website

Welcome House Flights Car Motorbike Bus & Rail Secondary Results	Welcome House Flights Car Motorbike Bus & Rail Secondary Results	Welcome House Flights Car Motorbike Bus & Rail Secondary Results
Welcome to the web's leading carbon footprint calculator	Car carbon footprint calculator	Public transport carbon footprint calculator
	You can enter details for up to 2 cars	Enter mileage for each type of public transport, and press the Calculate button
First, please tell us where you live: [why?]		
Country: United States	Mileage:	Bus: miles V
State: (average for country)	Choose vehicle: USA car database 🗸	Coach: miles ~
	- select year of manufacture - 🗸	Local or Commuter Train: miles ~
Carbon footprint calculations are typically based on annual emissions from the previous 12 months Enter the period this calculation covers (optional):	✓	Long Distance Train: miles V
from to Save		Tram: miles 🗸
	Or enter efficiency:	Subway: miles 🗸
Next, select the appropriate tab above to calculate the part of your lifestyle you are most interested in, e.g. your flights.		Taxi: miles ~
Or, visit each of the tabs above to calculate your full carbon footprint.	Calculate & Add To Footprint	
Following your calculation, you can offset / neutralise your emissions through one of our climate-friendly projects.	Total Car Footprint = 0.00 metric tons of CO ₂ e Offset Now	Calculate Bus & Rail Footprint
House >	< Flights Motorbike >	Total Bus & Rail Footprint = 0.00 metric tons of CO2e Offset Now
		< Motorbike Secondary >
Welcome House Flights Car Motorbike Bus & Rail Secondary Results	Welcome House Flights Car Motorbike Bus & Rail Secondary Results	
Household carbon footprint calculator		Welcome House Flights Car Motorbike Bus & Roil Secondary Results
Enter your consumption of each type of energy, and press the Calculate button	Motorbike carbon footprint calculator	Your Carbon Footprint:
	You can enter details for up to 2 motorbikes	C House 0.00 metric tons of COxe Flights 0.00 metric tons of COxe
Your individual footprint is calculated by dividing the amount of energy by the number of people in your house.		Car 0.00 metric tons of CO:e
How many people are in your household?	Mileage:	Bus & Rail 0.00 metric tons of COie Secondary 0.00 metric tons of COie
To calculate your full household footprint, select "1".		Total = 0.00 metric tons of CO2e
	Or enter efficiency: mpg (US)	To offset some or all of your carbon footprint, click the sections you would like to offset in the list above, and click the Offset Now button. Total To Offset = 0.00 metric tons of COze Offset Now
Electricity: kWh at a factor of 0.4532 kgCO2e/kWh what's this?	Calculate & Add To Footprint	
Natural gas:	Total Motorbike Footprint = 0.00 metric tons of CO ₂ e Offset Now	
Heating oil: US gallons V		
Coal: kWh V	< Car Bus & Rail >	
LPG: thems V		
Propane: US gallons V		
Wooden pellets: metric tons ~		Your Country World Footprint Average Average
Calculate Household Footprint		Your footprint is 0.00 metric tons per year The average footprint for people in United States is 16.49 metric tons The average for the European Union is about 6.4 metric tons
Total House Footprint = 0.00 metric tons of CO2e Offset Now		In the average for the European Union is about 6.4 meters to this The average workdwide cation forborn is solurit 4.8 metric tions The worldwide target to combat climate change is 0 metric tions
		If you're using a public computer; or want to try again, you can <u>(clear your carbon footprint data)</u> For ideas on how to reduce your carbon footprint, see the <u>CO2 Reduction section</u> of our velosite.
< Welcome Flights >		< Secondary

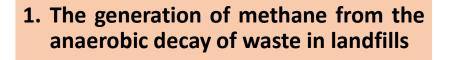
https://www.carbonfootprint.com/calculator.aspx

Carbon calculator website


CARBON FOOTPRINT CALCULATOR	HOUSEHOLD IT RANSPORTATION	EHOLD TRAVEL		PORTATION
Answer these questions to get started Complete calculations for	Tell us about your household Number of residents including myself:	2	How do you typically get are	ound?
US ZIP code	l live in a(n)	Detached single family home		Bus/Subway/Metro
(Optional)	Your Annual Emissions	12.07 Tons of CO ₂	Your Annual Emissions	12.07 Tons of CO ₂
CALCULATE FOOTPRINT	Average US Annual Emissions	19.33 Tons of CO ₂	Average US Annual Emissions	19.33 Tons of CO ₂

https://www.conservation.org/carbon-footprint-calculator#/

MYRESEARCH


World GHG emission in 2005

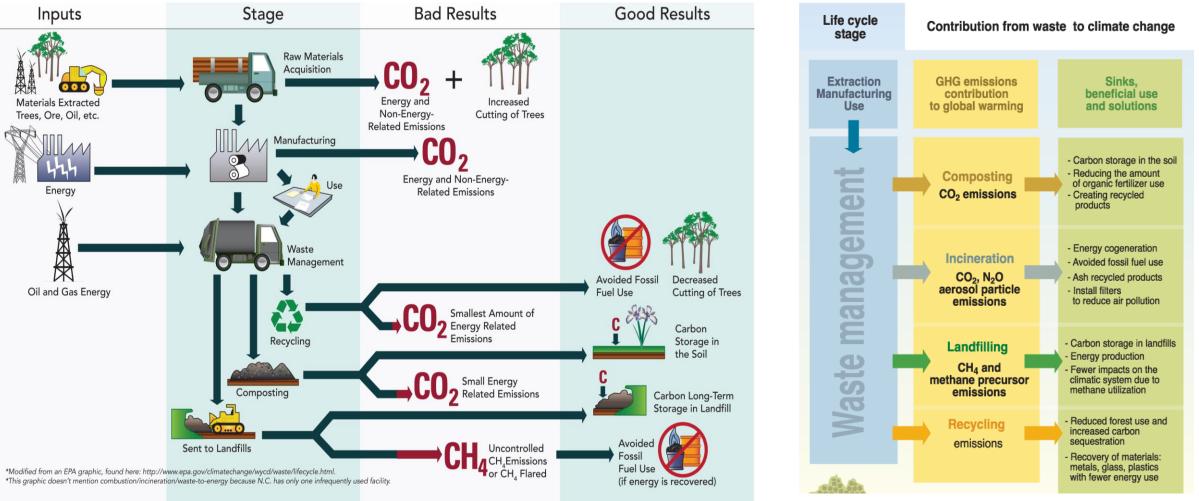
https://www.wri.org/data /world-greenhouse-gasemissions-2005

Wasteful impact on climate change

Solid waste contributes directly to greenhouse gas emissions that give high global warming potential through:

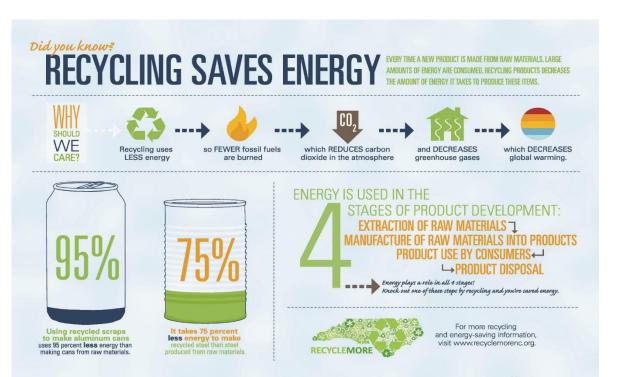
Methane has **21 times** the warming potential of carbon dioxide

90.9% of methane emissions in Malaysia were generated from landfill


2. The emission of nitrous oxide from our solid waste combustion facilities

Nitrous oxide has **310 times** worse than CO_2 in terms of global warming Last over **100 years** in the atmosphere

Waste and its link to GHG emissions


https://deq.nc.gov/conservation/recycling/recycling-climatechange <u>https://kingcounty.gov/depts/dnrp/solid-</u> waste/programs/climate/climate-change-wastemanagement.aspx</u>

Recycling and climate change

Reducing waste, recycling and composting are effective ways to decrease the generation of greenhouse gases such as carbon dioxide and methane. They achieve these benefits in two ways

- 1. by helping save energy in the processing of materials for industrial and consumer use, and
- 2. by reducing the flow of materials

Especially food and other organic wastes into landfills where anaerobic decomposition produces methane.

<u>https://deq.nc.gov/conservation/recycling/recycling-climate-</u> <u>change</u>

Composting and climate change

composting produces nutrient-rich fertilizer

HOW DOES COMPOSTING HELP THE ENVIRONMENT?

HUMAN ACTIVITY HAS INCREASED GREENHOUSE GAS EMISSIONS OF:

carbon dioxide (CO₂)

methane (CH₄)
 nitrous oxide (N₂O)
 fluorinated gases

The best way we can help decrease methane emissions is to compost!

COMPOSTING DECREASES THE GREENHOUSE GAS, METHANE

Composting = recycling organic, decomposable, biodegradable waste into nutrient-rich fertilizer for our crops.

aerobic nature of composting produces very little methane
 composting decreases the amount of trash that goes into landfills
 composting decreases methane emissions

Methane is a greenhouse gas that is, over the course of 20 years, 72 times more potent than CO₂ What are some everyday items that can be composted if + Vegetable, fruit scraps + Leaves, grass + Shredded paper + Paper towels + Eggshells + Coffee grounds, filters + Bread, grains, pasta + Tea bags

When organic waste is disposed of in the trash, instead of composted, it ends up in a landfill. As the landfill is filled and covered, no air can pass through, causing anaerobic conditions. In these conditions, the decomposition of organic waste produces methane within the landfill that needs to be released.

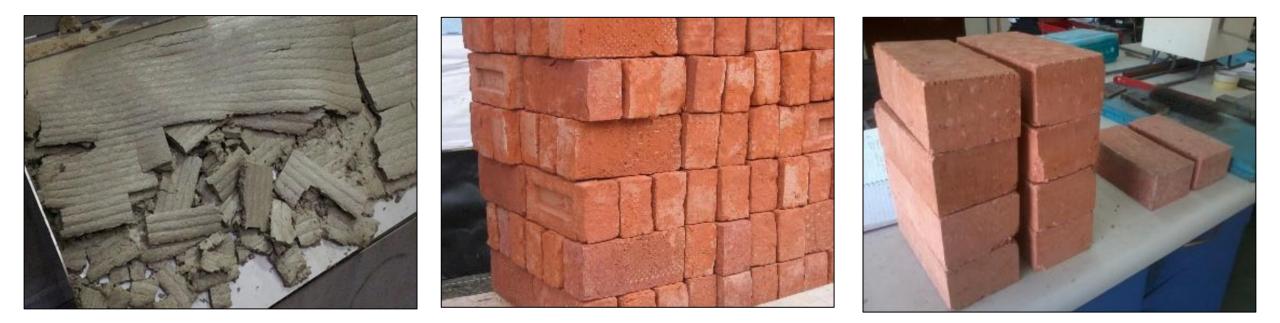
For more composting and environmental information, visit www.recyclemorenc.org.

https://deq.nc.gov/conservation /recycling/recycling-climatechange

MYRESEARCH – Cigarette butt brick

- CBs that are flicked away by smokers on the streets, footpaths, nature strips and gutters contain a significant amount of nicotine trapped in the fibres of the filter
- The cellulose acetate filters in CBs are slow to biodegrade and the toxic chemicals that trapped inside the body as they deteriorate pose a serious environmental risk

MYRESEARCH – Mosaic sludge brick


- Sludge can also be produced by industrial waste, hospital waste, wastewater, treatment plant, runoff from the street, farmland and in some cases from landfill leachate
- Sludge can be either organic and inorganic due to the wastewater treatment activity
- Mosaic sludge on this study will be divided by two : Polishing sludge (PS) and Bodymill sludge (BS)
- The mosaic sludge was collected in **semisolid condition**

MYRESEARCH – Palm oil mill waste brick

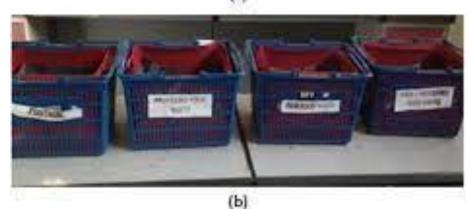
- Thousand tons of palm oil waste during oil palm extraction are produced annually and eventually disposed into landfill
- Different types of palm oil mill waste such as : Empty Fruit Bunch, Palm Fibre, Palm Kernel Shell and Palm Oil Fuel Ash

MYRESEARCH – Electroplating sludge brick

- Electroplating is the chemical process involves the deposition of metal ion into the surface of material with low-voltage direct current
- Applications: 1) Provide protective coating to prevent corrosion 2) Improve strength and appearance of the material
- In Malaysia, electroplating has dominated nearly 51.6% shares from metal finishing chemicals market in 2017 and predicted to contribute about USD 46.41 million by 2025 (Research and Market, 2018)

MYRESEARCH – Self-compaction concrete

- Malaysia could not escape from facing the solid waste management problems
- Economic growth has contributed to the increase in the demand for electricity primarily that was produced by coalfired plant
- It will lead to the increment in coal by the power plants thus will generate waste such as fly ash (FA) and bottom ash (BA) to landfills
- These wastes must properly manage and disposed of without causing any harmful environmental effects

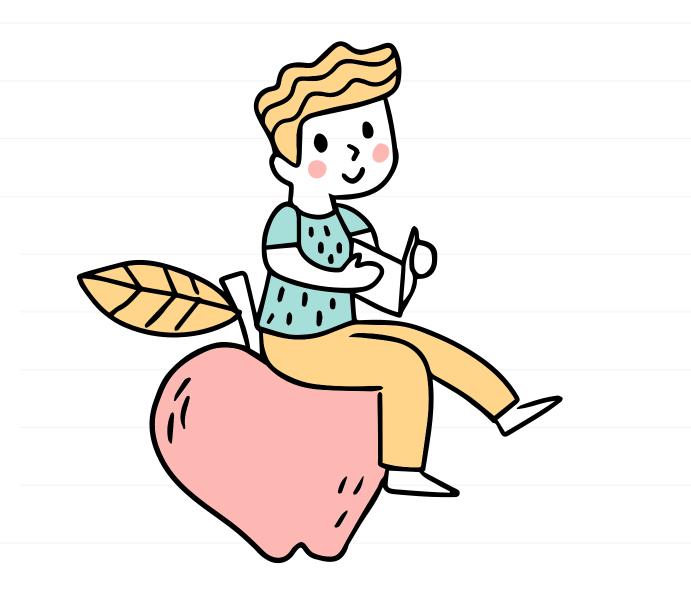

MYRESEARCH – Petroleum sludge/palm oil fuel ash/quarry dust concrete

- Petroleum has become the world's important source of energy due to its high energy density, easy transportability and relative abundance
- Investigation of the long-term leaching of heavy metals from petroleum sludge by using S/S matrices incorporated with palm oil fuel ash as replacement of cement and quarry dust as replacement of sand respectively
- Two types of leaching method are used to give the result on composition of heavy metals from S/S matrices and effect from the long-term leaching of heavy metals by using Semi-Dynamic Leaching Procedure (SDLP) and Static Leaching Test (SLT)

MYRESEARCH – The performance of Takakura composting using food waste from Makanan Ringan Mas industry

Community program

The handover of composting materials to 10 selected schools in Simpang Renggam Parliament


Takakura home composting technique

Composting and Recycling Demonstration

THANK YOU!

aeslina@uthm.edu.my aeslina.ak@gmail.com aeslina@gmail.com

