Geothermal resources for energy transition: Past, present and future of IGCP 636 group

Jasmin Raymond, Daniela Blessent, Mar Alcaraz, Michel Malo, Linda Daniele, Renato Somma

SY-04 MON 1:40 PM IUGS, Geoparks, and IGCP

ALIFAX 2022

Content

- ✓ Introduction
 - Geothermal Energy
- ✓ History of the group
- ✓ Collective goals
 - \checkmark Education and outreach
 - ✓ Deep geothermal resources
 - ✓ Shallow geothermal installations
- ✓ Contributions of project leaders
 - Conclusions

PROJECT 6 3 6

Geothermal Resources for Energy Transition

UNESCO

Geothermal Energy

- Low emissions
- Local resource
- 24/7
- Small footprint

• Heat Source:

Alkali Metal

- Earth's formationRadiogenic decay
- 19 **K** Potassium

Actinide

Actinide

SUSTAINABLE CITIES AND COMMUNITIES

History of the group Beginnings - 2014

Young scientist project 2016-2019

International mobility under the young scientist program

Colombia in 2016

Chile in 2017

France in 2018

- Annual meetings in 2016, 2017, and 2018
- Global participation of students

Present days

Daniela Blessent Project leader

Linda Daniele Project co-leader

Mar Alcaraz Project co-leader

Jasmin Raymond Project co-leader

Renato Somma Project secretary "Our main objective is to advance methodologies and techniques to characterize and model geothermal systems, ensuring sustainable exploitation and social acceptability of this form of renewable energy."

Collective goals

Educate and reachout to communities

Beter understand deep geothermal reservoirs Support the installation of geothermal heat pumps

Education and outreach

Survey to evaluate the public perception on geothermal energy

Research | Open Access | Published: 02 March 2021

An online survey to explore the awareness and acceptance of geothermal energy among an educated segment of the population in five European and American countries

D. Balzan-Alzate Z, J. López-Sánchez, D. Blessent, J. Raymond, C. Dezayes, J. P. Portela, E. Ramírez Restrepo, D. Moreno Rendón, M. Malo, P. Goderniaux, L. Daniele & T. Le Borgne

Geothermal Energy 9, Article number: 9 (2021) | Cite this article 1577 Accesses | 5 Altmetric | Metrics

Acceptance to produce geothermal energy

Decreased by 8 to 18 % when explaining that hydraulic stimulation may be required

Conditions that should be satisfied to support a pilot geothermal project

Education and outreach Geotheroom

Virtual learning platform about geothermal energy where students and professionals around the world can interact

Launched - January 2022

Education and outreach

Review of ongoing exploration for unconventional geothermal resources

Open Access Review

Review of Recent Drilling Projects in Unconventional Geothermal Resources at Campi Flegrei Caldera, Cornubian Batholith, and Williston Sedimentary Basin

by L Renato Somma ^{1,2,*} ⊠ [©], A Daniela Blessent ³ ⊠ [©], A Jasmin Raymond ⁴ ⊠ [©], A Madeline Constance ⁵ ⊠, A Lucy Cotton ⁵ ⊠, A Giuseppe De Natale ¹ ⊠ [©], A Alessandro Fedele ¹ ⊠ [©], A Maria Jose Jurado ⁶ ⊠ [©], A Kirsten Marcia ⁷ ⊠, A Mafalda Miranda ⁴ ⊠, A Claudia Troise ¹ ⊠ [©] and Thomas Wiersberg ⁸ ⊠

¹ Osservatorio Vesuviano, INGV, 80124 Naples, Italy

- 2 IRISS, CNR, 80134 Naples, Italy
- ³ Programa Ingeniería Ambiental, Universidad de Medellin, 050026 Medellin, Antioquia, Colombia
- ⁴ Institut National de la Recherche Scientifique, 490 Couronne St., Quebec City, QC G1K 9A9, Canada
- ⁵ GeoScience Limited Unit 1Falmouth Business Park, Bickland Water Road, Falmouth TR11 4SZ, UK
- ⁶ Geosciences Barcelona CSIC, 08028 Barcelona, Spain
- 7 DEEP Earth Energy Production Corp. Box 6 Site 515 RR5, Saskatoon, SK S7K 3J8, Canada
- ⁸ Helmholtz-Zentrum Potsdam—Deutsches GeoForschungsZentrum GFZ, 14473 Potsdam, Germany
- * Author to whom correspondence should be addressed.

Academic Editor: Paul Christodoulides

Ongoing exploration for unconventional resources

Campi Flegrei caldera, It – Supercritical fluids

Cornubian Batholith, UK – EGS

Williston Basin, Can – Hot sedimentary aquifer

/olcanic rocks (>39 ka); a: pyroclastics; b: lavas

Campania Ignimbrite (CI) (39 ka)

Ongoing exploration for unconventional resources

Table 2. Summary of the main characteristic of the three geothermal drilling projects considered.

Project Acronym	Country	Maximum Drilled Depth TVD	Bottom/Hole Temperature (°C)	Geothermal Gradient (°C/km)	Period of Drilling Activities	Number of Wells Drilled to Date in Each Project
CFDDP	Italy	500	~110	220	2012	1
UDDGP	United Kingdom	5057	187	37.2	2019	2
DEEP	Canada	3450	127	36.8	2019–2020	6

Table 3. Population density in the regions of the three geothermal projects reviewed.

Country	Site	Population Density Residents/km ²	Year	Source
Italy	City of Naples	8091	2020	ISTAT [62]
United Kingdom	Cornwall county	161	2018	Office for National Statistics [63]
Canada	Southern Saskatchewan province	<2	2020	Statistics Canada [64]

Somma, 2021 (Energies)

X

×

INRS contributions to IGCP 636 - Canada

The LOG (Laboratoire ouvert de géothermie)

Open access in exchange of contributions to a shared database

- Users can do its own thermo-hydraulic analysis for free
- Results are compiled in a common database (thermal conductivity, thermal diffusivity, porosity, permeability)
- Sample location and geological description have to be supplied

15 active/recent projects

Canada: Québec and Nunavik – 9 Nunavut – 1 Northwest Territories – 2 Yukon – 1

International: Madagascar – 1 Djibouti – 1 "Our main objective is to better understand subsurface heat transfer mechanisms allowing to refine ressources models and improve geothermal technologies."

 $oldsymbol{\circ}$

ogle

Quebec Dit

3D

Deep geothermal resource projects

Location Ressource typ		Use	Geological setting	Heat transfe	er (resource)
Asal Rift, Djibouti	High temperature hydrothermal	Electricity generation	Active rift and volcanism	Free convection	
Ambilobe and Ambanja, Madagascar	Moderate temperature hydrothermal	Electricity generation	Graben and fossil magmatic	Forced convection	
Burwash Landing, Yukon	Moderate to low temperature hydrothermal	Direct heat production	Active faults of an orogenic blet	Forced convection	
South Slave Region, Northwest Territories	Moderate to low temperature unconventional	Direct heat production	Hot sedimentary basin and basement rocks	Conduction	
La Prairie, Québec	Low temperature unconventional	Direct heat production and heat pumps	Sedimentary basin	Conduction	
Bécancour, Québec	Low temperature unconventional	Direct heat production and heat pumps	Sedimentary basin	Conduction	
Kuujjuaq, Nunavik	Low temperature unconventional	Direct heat production and heat pumps	Basement rocks	Conduction	

Asal Rift - Djibouti

- Electricity imports are 94% from Ethiopia
- Electrification rate of 51.8% only
- Electricity cost of 0.42 \$CAD/kWh

North Madagascar - Ambilobe

- 74% of electricity produced from fossil fuels
- Electrification rate of 39% only
- Wood is often used to extract vanilla, creating deforestation

ົທີ

ດ

Rajaobelisor (PhD

T(°C)

La Prairie, Québec

• Important real estate development on the south shore of Montreal

Bécancour (Québec)

- Québec government recently adopted a new bill (21) to stop oil and gas exploration
- Possibility to convert oil and gas wells in something greener

Bascuel, Pre-print Geothermics)

Kuujjuaq, Nunavik (Northern Québec)

- 14 k people living in 14 remote communities
- Strictly dependent on diesel for electricity and space heating
- Energy is cost (with subsidies) is 2 to 10 more than in the south

Geothermal heat pump projects

Location	System type	Use	Geological setting	Heat transfer (system)	
D'Estimauville, Québec (QC)	Groundwater (open loop)	Heating and Cooling	Unconfined gravel aquifer	Forced convection	<u> </u>
Éleonore Mine, Eeyou Istchee (James Bay, QC)	Groundwater (open loop)	Heating	Active mine	Forced convection	
Con Mine, Yellowknife (NWT)	Groundwater (open loop)	Heat production and storage	Flooded underground mine	Forced convection	
Carey and King Beaver Mines, Thetford Mines (QC)	Surface water (open loop)	Cooling	Floodedopenpit	Forced convection	
Kuujjuaq, Nunavik (QC)	Ground-coupled (closed loop)	Heat production and storage	Permafrost	Conduction	
Whapmagousthui- Kuujjarapik, Nunavik (QC)	Ground-coupled (closed loop)	Heat production and storage	Permafrost	Conduction	
Umiujuaq, Nunavik (QC)	Ground-coupled (closed loop)	Heat production and storage	Permafrost	Conduction	집
Montréal (QC)	Ground-coupled (closed loop)	Heating and cooling	Vadose zone	Conduction	

D'Estimauville, Québec (QC)

- Heat waves and urban heat islands are severely affecting the quality of life in dense cities
- Buildings require smart cooling solutions, but convention air conditioning systems can make it worst
- Aquifers can play a role to provide cooling

Éleonore Mine, Eeyou Istchee (James Bay, QC)

- Underground workings are heated with propane
- Annual heating bill near 1.5 M\$/yr

NSc Thesis)

Kuujjuaq, W.-K., Umiujuaq - Nunavik(QC)

- 50 % of energy consumed is for space heating
- Achieved with oil furnaces
- Oil sales are an important revenue for Inuits

Community greenhouses in Montreal (QC)

- The pandemic has highlighted the need for local food
- Community greenhouse can help underprivileged districts
- Affordable technologies are needed to heat greenhouses

	Scenario	Peak loads covered	System	Required space (m)	Comparison with greenhouse size of 116 m² (%)
Greenhouse (116 m ²)	1	100%	Heating	40.8 x 8 (326.4 m ²)	281%
		100%	Cooling	51.8 x 8 (414.4 m ²)	357%
	2	100%	Heating	40.8 x 8 (326.4 m ²)	281%
		60%	Cooling	34.8 x 8 (278.4 m ²)	240%
Scenario 1 Scenario 2 Scenario 3	2	40%	Heating	21.8 x 8 (174.4 m ²)	150%
$(414 \text{ m}^2) \qquad (326 \text{ m}^2) \qquad (174 \text{ m}^2)$	3	30%	Cooling	18.8 x 8 (148.8 m²)	128%

Léveillée-Dallaire (MSc Thesis

UdeM contributions to IGCP 636 - Colombia

2. Development of digital tools to share knowledge about geothermal

- · Creation of a Comic series to share knowledge about geothermal energy
- In collaboration with the Virtual Education department of Universidad de Medellín

KUTANI Y LA MISIÓN GEOTÉRMICA

1. Analyzing the feasibility shallow geothermal installations to provide the required cooling load for a flower storage room or similar space conditioning needs (greenhouses, university computer rooms...)

> 3. Fieldwork in the Nevado del Ruiz volcano area: geothermal potential assessment and geochemistry characterization

CEGA contributions to IGCP 636 - Chile

RIGS contributions to IGCP 636 - Argentina

Analytical solution for shallow geothermal energy management at city scale considering subsurface heat island effects in shallow aquifers

Regional evaluation of shallow geothermal energy in Latin American cities with GIS technics

Fig. 1. Map of gross shallow geothermal energy potential of Buenos Aires for a heat exchanger.

Promotion of shallow geothermal energy with an installation model reproducing the thermal behavior of aquifers

RSE* contributions to IGCP 636 - Italy

Research on Energy System –RSE Spa Italian Research Center Contact: Dr. Nunzia Bernardo nunzia.bernardo@rse-web.it

Research projects among

Mapping geothermal potential for high, medium and low enthalpy;

Numerical modeling to evaluate geological feasibility of innovative close loop geothermal plants;

RSE* contributions to IGCP 636 - Italy

- Geological and territorial evaluation of possible integration of geothermal in the energetic mix for the constitution for **Energy Communit**y;
- Support local and government institution to **develop strategic energetic plans** at different scales;

- Geological and geochemical evaluation of strategic raw materials content in geothermal brine (geothermal brine mining)*.

*part of this activity will be supported by the collaboration with two Italian research centers INGV and CNR

Process of mining lithium and other metals from geothermal brine (source: Simbol Materials)

Research on Electro-energetic System Italian Research Center Contact: Dr. Nunzia Bernardo nunzia.bernardo@rse-web.it

PROJECT 6 3 6

Geothermal Resources for Energy Transition

ŰŊ'

UNESCO

Conclusions

- 1. Education & outreach
- 2. Deep geothermal reservoirs
- 3. Geothermal heat pumps

Conclusions

IGCP 636 Group to provide expertise for geothermal drilling projects

- 234 m borehole drilled in Kuujjuaq
- Exploration borehole to be drilled in La Prarie (fall 2022)
- International Continental Drilling Program Interest in Colombia

LOPMENT UNESCO **IGCP 636**

Geothermal Resources for Energy Transition

<u>www.igcp636.com</u> <u>www.log.ete.inrs.ca</u> jasmin.raymond@inrs.ca

UNESCO IGCP 636

